Archives

Midshipmen-Facilitated Informal STEM Education

Jennifer A. da Rosa,
United States Naval Academy
Sarah S. Durkin,
United States Naval Academy
Rachel Hetlyn,
United States Naval Academy
Mark Murray,
United States Naval Academy
Angela Leimkuhler Moran,
United States Naval Academy

Abstract

The nation’s security relies heavily on future STEM talent with scientific and technical skills, which is why the United States Naval Academy (USNA) encourages midshipmen (all USNA undergraduates) to facilitate informal STEM education outreach events for K–12 students and teachers. This experience prepares the midshipmen as problem solvers, effective communicators, and leaders—all necessary attributes for officers in the United States Navy and Marine Corps— while encouraging more young people to be STEM-literate citizens and pursue STEM careers in Navy-relevant fields. Using event-specific pre- and post-surveys, we measured the gains that midshipmen made in communication, confidence, and leadership as a result of their facilitation experience. In addition, analysis of overall STEM Impact Survey results reveals that midshipmen’s participation in informal STEM outreach improves their motivation to remain in the STEM pipeline. This study will be useful for assessing gains made by activity educators, judges, mentors, or facilitators of other informal STEM outreach programs.

Introduction

It is not a sight you see every day: a midshipman from the United States Naval Academy (USNA) helping a fifth-grader glue washers onto a small piece of metal. After the midshipman describes how an underwater glider moves through the ocean, the student chooses a launch angle and releases her newly ballasted glider into the tank. She is delighted when it travels farther than previous attempts. This student is engaged in Navy-relevant project-based learning, and the midshipman is one of many who facilitate informal STEM education through USNA’s STEM Center for Education and Outreach (STEM Center).

Many organizations (educational, private, commercial, and governmental) offer, host, or support informal STEM education opportunities (Bonney et al. 2009; Committee on Science and Technology 2009; Harlow 2012; Phillips et al. 2007).

This can take many forms such as hosting a Family Science Night, judging a science fair, mentoring future scientists and engineers, promoting citizen science, or supporting competitions such as the FIRST Robotics or MathCounts. The primary goal of these activities is to increase STEM awareness and access community-wide. In order to gauge these efforts, organizations study participant gains made as a result of the informal event, usually through the use of surveys. Often overlooked in this process is the impact of the informal STEM activity on the educator, judge, mentor, or facilitator.

The Navy’s interest in STEM education comes as a response to the military’s struggle to recruit people with essential STEM experience, especially those from underrepresented groups, for both civilian and military positions (Committee on STEM Workforce Needs for the U.S. DOD 2012). Nationwide, policymakers and scholars often lament leaks or reduced input into the STEM pipeline of future science and engineering talent (Committee on STEM Workforce Needs for the U.S. DOD 2012; Hernandez et al. 2013; Korpershoek et al. 2013; Kubel 2012).

The STEM pipeline is a common metaphor describing the ever-narrowing conduit of people flowing from high school graduation, entering college, choosing a STEM major, graduating from college with a STEM major, and entering a STEM career (Cannady et al. 2014). Indeed, the Department of Defense (DOD) “hires more scientists and engineers, and sponsors more research and development projects than any other federal employer” (Miller 2011, 42). With that in mind, the goal of the USNA STEM Center is to encourage more young people to pursue STEM careers (especially in technical fields relevant to the Navy), to engage K–12 students and teachers in STEM innovation and project-based learning (PBL) methodology, and to increase retention of USNA STEM majors by engaging them in education outreach.

The STEM Center works to bridge the gap between formal and informal STEM education by engaging USNA midshipmen in the outreach process. Education outreach involves offering an educational event for groups that do not otherwise have access to that experience, and informal STEM education (ISTEM) refers to informal learning in science, technology, engineering, and math (Committee on Science and Technology 2009). Similar to informal science education, ISTEM is voluntary, self-paced, and free-choice, typically occurring outside of a traditional classroom (Falk 2001). Education in an informal setting is driven by learner interest and curiosity; thus the informal learner controls their level of engagement in pursuit of knowledge gratification (Falk and Storksdieck 2010; Harlow 2012).

For STEM Center events, the informal learners are K–12 students or teachers nationwide, and the facilitators are USNA faculty and undergraduate midshipmen volunteers. Representing a cross-sector collaboration between the Navy, education practitioners, our sponsors (Office of Naval Research, Office of the Secretary of Defense, Naval Academy Foundation), and event-specific partners (Maryland Mathematics Engineering Science and Achievement [MESA] and National Oceanic and Atmospheric Administration [NOAA]), these events fulfill a civic need to engage participants in STEM education and innovation in order to meet national security needs. Events include SeaPerch competitions and builds, Girls Days, MESA Days, Summer STEM Camps, STEM Educator Training (SET) Sail workshops, and Mini-STEM events. Most events utilize a workshop format in which participants join 30- to 60-minute modules focused on a particular topic (fluid mechanics, alternative energy, applied math, robotics, engineering design, applied science, and others). Modules are largely hands-on, combining the scientific method with the engineering design process, and emphasize essential naval applications of STEM innovation.

The autonomy and magnitude of midshipmen facilitator roles vary from event to event. For example, the lead facilitator for each module of Girls Day events is a USNA faculty member, with two to four midshipmen as assistant facilitators, whereas MESA Day modules are entirely operated by midshipmen facilitators. They have complete control over the module setup, organization, and presentation; only the content is loosely provided to them by STEM Center faculty, and active learning pedagogy encouraged. Both Girls Day and MESA Day events will be explored later in this article.

Review of Literature

Although considerable literature has focused on the impact of informal education among participants (Committee on Science and Technology 2009; Dierking and Falk 2010; Falk and Dierking 2000; Falk and Storksdieck 2010; Learning in the Wild 2010; Schwan 2014), research exploring facilitator gains made as a result of informal education is limited, focusing on either preservice teachers, formal service-learning, or mentorships. An informal education facilitator is one that arranges resources, establishes rich experiences, and engages with participants to promote learning (Schunk 2012). Harlow (2012), McDonald (1997), and McCollough and Ramirez (2010) investigated gains made by preservice teachers serving as Family Science Night facilitators. They each found that, as a result of informal science facilitation experience, preservice teachers gained confidence in their ability to teach and communicate science, improved in their understanding of the public’s prior science knowledge and preconceptions, and honed STEM education techniques to maximize public engagement. Similarly, Crone et al. (2011) found that the training of science and engineering graduate students in informal education yielded gains in student communication and evaluation skills.

Other researchers specifically explored undergraduate science majors involved in K–12 outreach as part of a formal service learning project (a combination of formal classroom learning with community service). Roa et al. (2007) found that undergraduate participation in K–12 science outreach increased confidence, boosted communication skills, linked knowledge with application, promoted identity-building, influenced career choices, and assisted in undergraduate retention of science majors. Both Gutstein et al. (2006) and Sewry et al. (2014) noted enhanced learning, academic development, and improved perceptions of science applications in society among undergraduate facilitators. LaRiviere et al. (2007) reported undergraduate chemistry majors learning and appreciating how children conceptualize science as a result of science education outreach.

Additional research investigated STEM undergraduate gains after mentoring young women who were considering a STEM career. Mentoring involves advising others on strategies and skills in a professional context (Schunk 2012). Chan et al. (2011) found that female undergraduate mentors majoring in biomolecular science experienced improved patience and communication as a result of their outreach mentoring experience to seventh graders. Furthermore, Amelink (2009) argues that mentoring benefits both mentor and protégé. Specifically, the mentor gains a sense of accomplishment, a boost in self-confidence, an augmentation in communication skills, and a feeling of personal validation. In addition, mentoring likely improves the retention of undergraduates in STEM fields (Amelink 2009).

Purpose

The above literature review indicates observable advantages for higher education students serving as outreach facilitators. However, no study yet exists investigating undergraduate STEM majors serving voluntarily as ISTEM facilitators for the K–12 community. Therefore, the purpose of this study is to explore the gains that USNA midshipmen made as a result of facilitating ISTEM outreach events. Guiding questions include (1) Do midshipmen demonstrate improvements in leadership, communication, and confidence after facilitating ISTEM events? and (2) Does participation in ISTEM improve midshipmen’s motivation to continue in the STEM pipeline? These questions can help to assess the gains made by activity educators, judges, mentors, or facilitators of other STEM outreach programs.

Theoretical Framework

Constructivist learning theory presupposes that learners actively construct their own knowledge (Kruckeberg 2006; Schunk 2012). STEM Center events are designed under the constructivist assumption that knowledge develops inside active learners through engagement in hands-on activities (Piagetian constructivism) and social interactions (Vygotskian constructivism). Furthermore, constructivists also assume that educators serve as facilitators, structuring environments for learners to actively engage with content and materials (Schunk 2012). In this sense, we postulate that informal education facilitators also actively learn from their experience in facilitating hands-on activities and interacting with event participants. Alan Friedman expressed a similar view in an interview with Ellen Mappen: “When you try to teach a concept to others your own understanding is really tested and improved. So I think undergraduates who learn to communicate science to informal audiences…have a unique experience that sharpens their own knowledge and communication skills” (Friedman and Mappen 2011, 35).

Methodology

USNA midshipmen involved in STEM Center outreach were surveyed for particular ISTEM events (Girls Day and MESA Day) and overall STEM outreach impact in 2013 and 2014. Survey questions were adapted from Assessing Women and Men in Engineering mentor surveys (Assessing Women and Men in Engineering 2014).

Event-Specific Surveys

Girls Day. Printed, anonymous pre- and post-surveys were administered to midshipmen facilitators of two Girls Day events: one on October 19, 2013 and the other on March 1, 2014. Survey responses were later entered into an electronic survey created using Google Forms for compilation and analysis. Girls Day is a one-day ISTEM event hosted at USNA in which 215 (on October 19, 2013) and 221 (on March 1, 2014) middle-school girls participated, to explore STEM concepts and careers using PBL. Activities at each Girls Day include modules on astronomy, weather, fluids, bioterrorism, rockets, robotics, physics, engineering design, and others. Each Girls Day module has a lead USNA faculty facilitator, who supervises two to four midshipmen facilitators. Approximately forty-eight midshipmen facilitated the October 19, 2013 event. Twenty-four pre-surveys and seventeen post-surveys were collected on that day. The March 1, 2014 event was facilitated by approximately thirty-one midshipmen, with twenty-one pre-surveys and eighteen post-surveys being collected (Table 1). Pre-survey questions employed multiple choice or Likert scale. Post-survey questions employed multiple choice, Likert scale, and open-ended response. Similar Likert scale questions appeared on both pre- and post-surveys to measure changes as a result of event participation:

  • As a leader for a STEM activity, how much ability do you have for each of the skills listed below? (Likert scale response: None, Some, Good, Excellent)
  • Ensure that participants are satisfied with their participation in an activity
  • Deliver an effective explanation of an activity to the participants
  • Take charge of leading a portion of a student activity
  • Solve a conflict between participants effectively
  • Motivate participants to actively engage in an activity
  • Teach a hands-on skill, after being trained
  • Adjust activities when things aren’t going as planned
  • Positively influence younger children through your leadership
  • Communicate with diverse audiences (age, ethnicity, region)

Other questions appeared only on the post-survey:

  • Please respond to these items that will help us improve the activity that you participated in. (Likert scale response: NO, Strongly Disagree; Disagree; Neutral; Agree; YES, Strongly Agree)
  • The organizers adequately supported me in fulfilling my assigned duties.
  • If I needed help in solving problems during an activity, it was readily available.
  • I had adequate information about the activity and my role in order to do a good job.
  • I had adequate training to prepare me to effectively perform my leadership role.
  • From my point of view, the students I led are satisfied with my performance.
  • From my point of view, the students I led found participation worthwhile.
  • This activity was well organized.
  • This activity should be offered again.
  • My participation in this activity led me to a better understanding of a STEM field.
  • My participation in this activity led me to a fuller exploration of my own career goals.
  • My participation in this activity makes me more confident in my own ability to succeed in a STEM field.
  • My participation in this activity improved my leadership skills.
  • What are two things you learned by participating in this STEM event?
  • What was effective about the way this event was organized?
  • What needs to be improved the next time this event is offered?

Finally, a paired sample t-test was conducted to compare pre- and post-survey questions that appeared on both instruments.

Download (TIFF, 67KB)

MESA Day. Printed, anonymous pre- and post-surveys were administered to midshipmen facilitators of two MESA Day events: one on November 22, 2013 and the other on November 5, 2014. Survey responses were later entered into an electronic survey created using Google Forms for compilation and analysis. Pre- and post-survey questions were exactly the same as Girls Day survey questions. MESA Day is an event held in collaboration with Maryland Mathematics Engineering Science Achievement (MESA). For each MESA Day, midshipmen stage and facilitate a full day of hands-on modules (robotics, buoyancy, water properties, polymers, engineering design, and more) for approximately 250 fifth-grade students from local schools at the Johns Hopkins Applied Physics Laboratory. Thirty-three (on November 22, 2013) and thirty-four (on November 5, 2014) midshipmen facilitated each MESA Day, exercising complete control over module set-up, organization, and presentation. Thirty-three pre-surveys and twenty-seven post-surveys were collected for the November 22, 2013 event, and thirty-four pre-surveys and thirty-four post-surveys were collected on November 5, 2014 (Table 1). A paired sample t-test was conducted to compare pre- and post-surveys. For the November 5, 2014 post-survey, responses to the open-ended question “What are two things you learned by participating in this STEM event?” were categorized and tabulated based on subject occurrence such as communication, leadership, or facilitation.

STEM Impact Survey

An anonymous STEM Impact Survey was created using Google Forms and administered via email on December 20, 2013 to eighty-four midshipmen with over six hours of STEM outreach participation during fall semester of 2013, and on December 12, 2014 to 104 midshipmen with over six hours of participation during fall of 2014. The 2013 survey had forty-two midshipmen respondents, and the 2014 survey had sixty-five respondents (Table 2). Survey questions employed multiple choice or Likert scale:

  • Please respond to these items to describe how participation in STEM outreach has impacted you. (Likert scale response: Strongly Disagree, Disagree, Neutral, Agree, Strongly Agree, Not Applicable)
  • My participation in STEM outreach made me more confident in my own ability to succeed in a STEM field.
  • My participation in STEM outreach influenced me to choose a STEM major.
  • My participation in STEM outreach influenced me to stay in a STEM major.
  • How has your participation in STEM outreach influenced you as a student?
  • If applicable, please describe how participation in STEM outreach influenced you in selecting or staying in a STEM major.

Question 3 appeared only on the 2014 STEM Impact Survey, not on the 2013 survey. All other questions were the same on both instruments. Likert responses indicating “Not Applicable” were removed from the analyzed data set.

Download (TIFF, 38KB)

Results and Discussion

Event-Specific Surveys

Comparison of pre- and post-surveys for the March 1, 2014 Girls Day (Figure 1) and the November 5, 2014 MESA Day (Figure 3) indicated improvement in all leadership categories as a result of event participation: communication, improvisation, teaching ability, conflict resolution, module management, and concept clarification. Specifically, midshipmen facilitators on Girls Day experienced the greatest gains in their ability to motivate module participants (10.9 percent), adjust activities spontaneously (10.1 percent), communicate with diverse audiences (8.7 percent), and teach a hands-on activity (6.5 percent) (Figure 2). Three of these gains were statistically significant using a paired sample t-test: motivate module participants, t(12) = 1.90, p = 0.08; communicate with diverse audiences, t(12) = 2.74, p = 0.018; teach a hands-on activity, t(11) = 2.16, p = 0.054. Midshipmen facilitators on MESA Day indicated greatest gains in their ability to adjust activities spontaneously (9.5 percent), solve a conflict between participants effectively (8.8 percent), positively influence younger children (5.2 percent), and ensure participants are satisfied with their participation (4.4 percent) (Figure 4). All of these gains were statistically significant according to the paired sample t-test: adjust activities spontaneously, t(30) = 3.24, p = 0.003; solve a conflict effectively, t(30) = 1.97, p = 0.058; positively influence children, t(30) = 2.24, p = 0.03; ensure participants are satisfied, t(30) = 2.52, p = 0.017.

Download (TIFF, 51KB)

Download (TIFF, 49KB)

Originally, we anticipated that MESA Day would yield greater leadership gains overall compared to Girls Day, because the event allows midshipmen greater ownership and influence as facilitators. However, this was not consistently the case. The 2014 MESA Day event, in which midshipmen had more control over module execution, yielded greater gains in midshipmen’s ability to solve conflict between participants and to positively influence young children than did Girls Day. On the other hand, 2014 Girls Day midshipmen reported greater gains in ability to motivate and engage girls in activities, to teach a hands-on skill, and to communicate with a diverse audience compared to MESA Day. We suspect the greater gains displayed among Girls Day midshipmen was due to the large number of first-time outreach midshipmen participants for that event. Eight of the twenty-one midshipmen (38 percent) facilitating the 2014 Girls Day rated themselves as “I have not yet participated in a STEM activity” on the pre-survey. On the other hand, only three of the thirty-four midshipmen (9 percent) facilitating the 2014 MESA Day rated themselves in that category. In our experience, first-time ISTEM midshipmen tend to rate their leadership abilities lower on administered pre-surveys than experienced midshipmen facilitators. Furthermore, the data indicate that newer facilitators report greater gains in leadership abilities due to a single ISTEM event.

Download (TIFF, 51KB)

Download (TIFF, 48KB)

The November 5, 2014 MESA Day post-survey responses to “What are two things you learned by participating in this STEM event?” were coded and tabulated based on subject occurrence (Figure 5). One midshipmen wrote “I learned how to better communicate with children and how to lead groups of kids” (MESA Post-survey 2014). Therefore, this response was coded under communication, leadership, and audience (kids). Overall, responses mentioning working with children (26 percent), communication (22 percent), and facilitation experience (22 percent) occurred most frequently.

Download (TIFF, 109KB)

Midshipmen from all four events (Girls Day on October 19, 2013 and March 1, 2014; MESA Day on November 22, 2013 and November 5, 2014) rated their leadership abilities between 3.1 and 3.7 on post-surveys, with (3) being Good Ability and (4) being Excellent Ability (Figure 6). The highest skill averages occurred for ability to take charge of leading a student activity (3.6) and ability to teach a hands-on skill (3.6). Midshipmen facilitators are placed in the role of subject matter expert for each event and subsequently draw on their own STEM background to engage and lead participants. Prior training in event-specific project-based learning helps to prepare midshipmen as hands-on activity facilitators. The lowest skill averages occurred for ability to solve a conflict between participants (3.2) and ensuring participant satisfaction (3.3). This is possibly due to the nature of module execution. Children may be less inclined to argue in the presence of a stranger (the module facilitator). Moreover, module brevity (thirty to sixty minutes) makes it difficult for midshipman facilitators to thoroughly assess participant satisfaction.

Download (TIFF, 54KB)

Comparison of post-survey midshipmen responses regarding effects of participation for all four events revealed overall gains in leadership skills, confidence to succeed in STEM, and understanding of a STEM field (Figure 7). The scores ranged between 3.8 and 4.6 with (3) being Neutral, (4) being Agree, and (5) being Strongly Agree. As a result of event participation, midshipmen indicated improved leadership skills (average = 4.4), more confidence in their ability to succeed (average = 4.2), and a better understanding of a STEM field (average = 4.0). A relatively weaker agreement occurred in response to “this activity led me to a fuller exploration of my own career goals” (average = 3.9). This may be due to the midshipmen’s service commitment. Unlike traditional undergraduates, USNA midshipmen must serve at least five years in the Navy after graduation, making their career paths somewhat fixed.

Download (TIFF, 44KB)

STEM Impact Survey

General assessment of midshipmen ISTEM facilitators for the fall 2013 and 2014 semesters revealed gains in motivation to improve academic performance and to stay in a STEM major (Figure 8). Midshipmen also indicated a boost in confidence to succeed in a STEM field as a result of ISTEM participation, averaging 4.0 for 2013 and 4.2 for 2014 where (3) is Neutral, (4) is Agree, and (5) is Strongly Agree. As the following excerpts from the STEM Impact Survey 2014 show, open-ended responses support Likert question findings and also indicate gains in STEM application, communication, and enthusiasm:

Response 1: “I had a better understanding of some of [my] courses by applying them in STEM activities. For example, I applied some knowledge about cryptography (that I learned in Plebe [freshman] Cyber) in one of the STEM activities I participated [in]!”

Response 2: “It seems simple, but the act of teaching younger kids about how cool STEM is actually makes me think about how interesting it actually is. It makes me more curious when I learn about the simple ways the world works and drives me to do research on my own.”

Response 3: “Participating in a STEM outreach event helps me apply what I’ve learned in the classroom to a situation where I have to break down concepts in order to explain the science behind the math.”

Response 4: “STEM outreach influenced me to stay within my STEM major because of how applicable it is to everyday life.”

Response 5: “It makes me appreciate my major more. Being able to educate others in the basics of engineering is a great way to see how my efforts in school are benefiting others and their futures.”

Many respondents indicated that facilitating ISTEM outreach influenced them to continue in a STEM major, thereby supporting our hypothesis that midshipmen’s participation in ISTEM outreach improves their motivation to stay in the STEM pipeline. This is particularly interesting for policymakers and scholars interested in strengthening the metaphorical STEM pipeline in order to ensure future science and engineering talent for our nation’s workforce.

Download (TIFF, 41KB)

Conclusion

The purpose of this study was to explore gains made by volunteer undergraduate STEM majors serving as ISTEM facilitators for USNA’s STEM Center. Driving questions were (1) Do midshipmen demonstrate improvements in leadership, communication, and confidence after facilitating ISTEM events? and (2) Does participation in ISTEM improve midshipmen’s motivation to continue in the STEM pipeline? We found that Girls Day facilitators experienced gains in their ability to motivate module participants, communicate with diverse audiences, and teach a hands-on activity. MESA Day facilitators reported gains in their ability to adjust activities spontaneously, solve conflict between participants effectively, positively influence children, and ensure participant satisfaction. Indeed, our findings correlate with existing literature that undergraduate facilitation of ISTEM yields improved confidence in discussing STEM concepts, greater communication skills, experience taking charge of an activity, practice improvising and adapting to the unexpected, and an improved understanding of STEM fields and their importance to society. Other STEM outreach programs might consider assessing gains made by educators, judges, mentors, or facilitators in a similar manner in order to better determine the impact of their event.

Furthermore, based on midshipmen’s responses to the culminating STEM Impact Survey, experience facilitating ISTEM events appears to increase motivation to stay in the STEM pipeline and improve academically. This finding is significant for other outreach and education programs dedicated to improving retention in the STEM pipeline. Further research is needed to explore whether skills honed while facilitating ISTEM outreach help midshipmen after graduation—while serving in the fleet, or later, when some of them enter the civilian workforce.

Acknowledgements

We would like to thank the Office of Naval Research, Office of the Secretary of Defense, and Naval Academy Foundation for their support of USNA’s STEM Center for Education and Outreach.

About the Authors

Jennifer A. da Rosa is an Instructor of Practical Applications for STEM at the United States Naval Academy. She has an M.S. in Geoscience from Texas A&M University and is an Ed.D. student at Northeastern University. Her research interests include conceptual change and learning theory, impacts of informal STEM education, and STEM education policy.

Sarah S. Durkin is a Professor of the Practice for STEM at the United States Naval Academy. Previously, she was a researcher at Pfizer Global Research and Development in cancer drug discovery. She received her Ph.D. in Biology from Eastern Virginia Medical School and Old Dominion University in Norfolk, VA.

Rachel Hetlyn is an Instructor of Practical Applications for STEM at the United States Naval Academy. Previously, she was an outreach educator for the Museum of Science in Boston, MA. Rachel Hetlyn holds a bachelor’s degree in geophysics and planetary sciences from Boston University.

Mark Murray, Ph.D., P.E. is a Professor in the Mechanical Engineering Department at the United States Naval Academy. He is the Nuclear Engineering Program Director and has taught numerous courses in fluid mechanics, thermodynamics, and nuclear engineering. Dr. Murray holds a Ph.D. from Duke University and is a licensed professional engineer in the State of South Carolina.

Angela Leimkuhler Moran is a Professor of Mechanical Engineering and the Odgers Professor for STEM at the United States Naval Academy. Her research interests include rapid prototyping and rapid solidification, materials characterization, and failures analysis. At USNA, she has developed a series of STEM Educational Outreach programs that impact over 18,000 students and 800 educators a year. She received her Ph.D. from Johns Hopkins University.

References

Amelink, C. 2009. “Mentoring and Women in Engineering.” In Apply Research to Practice (ARP) Resources, B. Bogue and E. Cady, eds.

“Assessing Women and Men in Engineering.” 2014. In Stem Assessment Tools: Mentor. http://www.engr.psu.edu/AWE/ (accessed May 31, 2015).

Bonney, R., C.B. Cooper, J. Dickinson, S. Kelling, T. Phillips, K.V. Rosenberg, and J. Shirk. 2009. “Citizen Science: A Developing Tool for Expanding Science Knowledge and Scientific Literacy.” BioScience 59 (11): 977–984.

Cannady, M.A., E. Greenwald, and K.N. Harris. 2014. “Problematizing the Stem Pipeline Metaphor: Is the Stem Pipeline Metaphor Serving Our Students and the Stem Workforce?” Science Education 98 (3): 443–460.

Chan, Y.M., W. Hom, and J.K. Montclare. 2011. “Implementing and Evaluating Mentored Chemistry-Biology Technology Lab Modules to Promote Early Interest in Science.” Journal of Chemical Education 88 (6): 751–754.

Committee on Science and Technology. 2009. Beyond the Classroom: Informal Stem Education. Hearing before the Subcommittee on Research and Science Education, Committee on Science and Technology, House of Representatives, One Hundred and Eleventh Congress, First Session, February 26, 2009. Washington, DC: U.S. Government Printing Office.

Committee on STEM Workforce Needs for the U.S. DOD. 2012. Report of a Workshop on Science, Technology, Engineering, and Mathematics (STEM) Workforce Needs for the U.S. Department of Defense and the U.S. Defense Industrial Base. Washington, DC: National Academies Press.

Crone, W.C., S.L. Dunwoody, R.K. Rediske, S.A. Ackerman, G.M. Zenner Petersen, and R.A. Yaros. 2011. “Informal Science Education: A Practicum for Graduate Students.” Innovative Higher Education 36 (5): 291–304.

Dierking, L.D., and J.H. Falk. 2010. “The 95 Percent Solution: School Is Not Where Most Americans Learn Most of Their Science.” American Scientist 98 (6): 486.

Falk, J.H. 2001. “Free-Choice Science Learning: Framing the Discussion.” In Free-Choice Science Education: How We Learn Science Outside of School, J. H. Falk, ed., 3–20. New York: Teachers College Press.

Falk, J.H., and L.D. Dierking. 2000. Learning from Museums. Walnut Creek, CA: AltaMira Press.

Falk, J.H., and M. Storksdieck. 2010. “Science Learning in a Leisure Setting.” Journal of Research in Science Teaching 47 (2): 194–212.

Friedman, A.J., and E.F. Mappen. 2011. “SENCER-ISE: Establishing Connections between Formal and Informal Science Educators to Advance STEM Learning through Civic Engagement.” Science Education & Civic Engagement: An International Journal 3 (2): 31–37.

Gutstein, J., M. Smith, and D. Manahan. 2006. “A Service-Learning Model for Science Education Outreach.” Journal for College Science Teaching 36 (1): 22–26.

Harlow, D.B. 2012. “The Excitement and Wonder of Teaching Science: What Pre-Service Teachers Learn from Facilitating Family Science Night Centers.” Journal of Science Teacher Education 23 (2): 199–220.

Hernandez, P.R., P.W. Schultz, M. Estrada, A. Woodcock, and R.C. Chance. 2013. “Sustaining Optimal Motivation: A Longitudinal Analysis of Interventions to Broaden Participation of Underrepresented Students in STEM.” Journal of Educational Psychology 105 (1): 89–107.

Korpershoek, H., H. Kuyper, R. Bosker, and G. Van Der Werf. 2013. “Students Leaving the STEM Pipeline: An Investigation of Their Attitudes and the Influence of Significant Others on Their Study Choice.” Research Papers in Education 28 (4): 483–505.

Kruckeberg, R. 2006. “A Deweyan Perspective on Science Education: Constructivism, Experience, and Why We Learn Science.” Science & Education 15 (1): 1–30.

Kubel, E. 2012. “Keeping the STEM Pipeline Full.” Advanced Materials & Processes 170 (4): 2.

LaRiviere, F.J., L.M. Miller, and J.T. Millard. 2007. “Showing the True Face of Chemistry in a Service-Learning Outreach Course.” Journal of Chemical Education 84 (10): 1636–1639.

“Learning in the Wild: Much of What People Know about Science Is Learned Informally.” 2010. Nature 464 (7290): 813-814.

McCollough, C.A., and O.M. Ramirez. 2010. “Connecting Math and Science to Home, School, and Community through Preservice Teacher Education.” Academic Leadership Journal 8 (2): 82–93.

McDonald, R.B. 1997. “Using Participation in Public School “Family Science Night” Programs as a Component in the Preparation of Preservice Elementary Teachers. Science Teacher Education 81 (5): 577-595.

Miller, C.D. 2011. Defense Department Embraces Stem Education Outreach. National Defense. 95: 42.

Phillips, M., D. Finkelstein, and S. Wever‐Frerichs. 2007. “School Site to Museum Floor: How Informal Science Institutions Work with Schools.” International Journal of Science Education 29 (12): 1489–1507.

Roa, S., D. Shamah, and R. Collay. 2007. “Meaningful Involvement of Science Undergraduates in K-12 Outreach.” Journal of College Science Teaching 36 (6): 54–58.

Schunk, D.E. 2012. Learning Theories: An Educational Perspective. Boston: Pearson Education Inc.

Schwan, S. 2014. “Understanding and Engagement in Places of Science Experience: Science Museums, Science Centers, Zoos, and Aquariums.” Educational Psychologist 49 (2): 70–85.

Sewry, J.D., S.R. Glover, T.G. Harrison, and D.E. Shallcross. 2014. “Offering Community Engagement Activities to Increase Chemistry Knowledge and Confidence for Teachers and Students.” Journal of Chemical Education 91 (10): 1611–1617.

 

 

Connecting to Agriculture in Science Centers to Address Challenges of Feeding a Growing Population

Kathryn Stofer, University of Florida

Abstract

The need to feed nine billion people by 2050 looms large. While the problem is complex, increasing civic engagement around the need and the potential solutions must be emphasized. Museums are fundamental places for the public to support efforts in public education to re-emphasize the connections between agriculture and science, technology, engineering, and math (STEM) fields. Yet many science museums do not explicitly highlight those connections through exhibits. The authors categorized a sample of science museums across the country into small, medium, and large, based on square footage, annual attendance, and operating expenses, and took inventory of exhibits at each museum. As we suspected, we found a general lack of exhibits explicitly labeled as agricultural but a high percentage of exhibits related to agriculture content or practices. Thus, we suggest science centers could re-brand existing content and programs to address civic engagement around agriculture to feed our growing population.

Introduction

Estimates suggest that by the year 2050, the world will have a population of at least nine billion people, nearly two billion more than today (Godfray et al. 2010; Leaders of Academies of Sciences 2012). Furthermore, we know that the world faces challenges of adequately feeding even the current population, in both wealthy and developing countries. How will we meet the challenges of producing and distributing enough food for even more global inhabitants, especially while preserving the natural resources needed to continue to do so long term? This is the crux of the food security challenge facing the world, a challenge that crosses applied fields like agriculture as well as the underlying basic disciplines of science, technology, engineering, and math (STEM).

Much of the public support for research funding and decision-making around food issues will rely on an understanding of the connections among such basic research and agricultural fields. Museums are beginning to realize their role in assisting in such civic engagement, though they have yet to take full advantage of their existing resources to do so (Kadlec 2009). Many across the spectrum of content types (e.g., science, art, or history) are already exploring exhibits and programs related to food (Merritt 2012). However, other museums may not feel that food is in their mission, or may not know easy ways to contribute to conversations about food and agriculture or connect existing resources without large inputs of time and effort (Merritt 2012). Further, they themselves may not connect the applied discipline of food production with basic science and research, or even with their current efforts at sustainability.

Science museums, more often called science centers in their professional associations, are natural contexts for agriculture and food security issues, given their existing focus in both exhibits and programming on the basic disciplines. Such support could simultaneously encourage public involvement and action on the issue and inspire and prepare the necessary future Ag-STEM research workforce. Indeed, at least a few science centers already offer agricultural connections (“Tapping into Agriculture” 2014). This article investigates the broader potential for integrating agriculture into science centers. Specifically, it examines the existence of agriculture-related content, including that related particularly to food and food security, in science centers across the United States.

Review of Literature

From the 1950s-1980s in the United States, agricultural education in secondary school was essentially separated from science and math (S1057 Multistate Research Project 2012), and to some extent from technology and engineering. Agricultural education was considered a pathway to a career immediately after high school graduation, part of a vocational program (National Commission on Excellence in Education 1983; Phipps et al. 2008), while STEM classes, especially at the advanced level, were considered preparatory classes for college (Oakes 1986). This separation persists (Oakes and Saunders 2008) and may be one reason for the lack of STEM contextualization for learning through secondary school and the dropout of students from STEM career paths. Therefore, this persistent separate tracking could be a factor in the scarcity of STEM-skilled, and particularly Ag-STEM-skilled, workers in the U.S. workforce.

Calls to re-emphasize the STEM fundamentals inherent in agricultural programs (Enderlin and Osborne 1992; Hillison 1996; National Research Council 2009; Thoron and Myers 2008) aim to address the need for STEM-skilled workers, particularly in the agricultural industries and agricultural research. Existing problems of food insecurity, sustainability, and looming global crises of feeding a growing population demand interdisciplinary research and solutions (Godfray et al. 2010; Schmidhuber and Tubiello 2007; Guillou and Matheron 2014).

Another fundamental problem thought to plague STEM education is a lack of real-world context (National Research Council [U.S.] 1996; Rivet and Krajcik 2008). STEM fields struggle to retain students and excite them about careers, suffering especially from a lack of real-world connection and, especially for women, connection to helping people (White 2005; Wilson and Kittleson 2013; Herrera et al. 2011; Maltese 2008; Carlone and Johnson 2007).

However, school is neither the only place, nor necessarily the most frequent place, a person learns. In a typical American’s lifetime, over 95 percent of one’s time is spent outside of a formal school context, and even during formal school years, a significant portion of one’s time is spent away from the classroom (Falk and Dierking 2010). That time may be spent on paid or volunteer work, recreation, socializing, or family, among other things, meaning that there is a significant influence of these social and community groups on learning (Rogoff 2003; Vygotsky 1978). The preponderance of out-of-school influence means that to truly re-emphasize the interconnectedness of agriculture and STEM, learners must see the connections throughout their lives, not only in their formal classrooms.

The adult public in the United States has long been thought to be able to benefit from increased science knowledge and skills, which could result in more able and engaged participation in the workforce (Carnevale et al. 2011) and in our democracy (Meinwald and Hildebrand 2010; Miller 2010). The majority of workforce indicators predict a further skills gap in the coming years between employers’ needs and employees’ skills at the time of hire (Carnevale et al. 2011; Goecker et al. 2010; Committee on Prospering in the Global Economy of the 21st Century [U.S.] 2007). Further, as recently as 2008, roughly 70 percent of U.S. adults were thought to be unable to read and make use of The New York Times Science section (Miller 2010), one metric lately used to track the effectiveness of science communication for broad outreach and baseline science “literacy.” However, many adults, once finished with their degrees, do not return to formal school for additional learning.

Science centers play a major role in adult and out-of-school science learning (Falk and Dierking 2000). In fact, they naturally embrace many of the ideals inherent in the Next Generation Science Standards (NGSS) for secondary school science learning: question-driven, learner-centered, hands-on, and integrated development of knowledge, practices, and abilities (Bell et al. 2009). They also attract a wide audience of learners each year, both school groups and independent visitors (Falk and Dierking 2000). These days, less than 2 percent of the U.S. population lives on a farm (National Institute of Food and Agriculture 2015), and informal education institutions are one major potential source of adult learning about agriscience.

While students are in formal school, agriscience teachers may use science centers to reinforce agriscience learning, and these field trips may be especially important for rural residents. In the United States, agriculture is often overlooked as an explicit component of formal curricula in science, technology, engineering, and mathematics, whether those curricula are integrated as STEM or separate, and agriculture may also be disconnected from these domains in the minds of the public. Reconnecting agriculture with its research and engineering underpinnings in public spaces through the context of food can reinforce the interconnectedness between them that some students learn in school, or provide connections for students who still experience the Ag-STEM subjects independently of each other.

Without connections to agriculture in these everyday settings, the artificial intellectual divide between agriculture and other science domains in the minds of the public may be perpetuated. This public divide can hurt not only efforts to prepare school children to be future Ag-STEM researchers and workers but also efforts to involve the public in decision-making for sustainable food production for our future population.

Science centers have begun to explore ways to be more involved in public scientific issues (Kadlec 2009; McCallie 2010; Worts 2011). Moving beyond simply presenting engaging information and experiments on accepted science, many are beginning to introduce exhibits and theaters that explore science at the forefront, aiming to present science and technology as it emerges, with all the surrounding ethical, economic, and environmental considerations. The Café Scientifique, or Science Café, movement is explicitly trying to foster public dialogue about these considerations and issues by bringing the public together in forums designed to encourage discussion with experts (Dallas 2006; McCallie 2010).

Previous special journal issues, including Museums and Social Issues in April 2012 and the March/April 2014 volume of the Association of Science-Technology Centers’ Dimensions, explored case studies of exhibitions related to food in more detail, including internationally. However, little attention has been paid so far to a broader, field-wide emphasis on bringing agriculture to all science center visitors and thus to a significant portion of the U.S. public. The focus on food also could neglect the broader story of agriculture and its global effects from start to finish, from research to production to distribution, with its STEM basis as well as its context that touches everyone.

Purpose of the Study

For the many reasons outlined, science centers are ideal places to start to support efforts to make explicit and emphasize the Ag-STEM connections for all of their audiences. Indeed, we suspect that in many cases existing exhibits and programs could support Ag-STEM efforts without major renovations; in fact, such emphasis may require only minor adjustments to language and framing in promotional and educational materials, programs, and the exhibits themselves. Therefore, this study sampled large and small U.S. science centers to determine which and to what extent existing exhibits have explicit or underlying relations to agriculture that could be exploited for Ag-STEM integration emphasis purposes.

Method

A sample of science centers in the United States was created, spanning geographical and size diversity to the best extent possible. A list of the top ten science centers by 2010 annual attendance (Walheimer 2012) was the starting point for devising the sample of large science centers. To this list were added well-known large museums or centers that were not on the list due to lack of membership in professional organizations, namely the Smithsonian Air and Space, American History, and Natural History Museums, The Perot Museum of Nature and Science in Dallas, Texas, and the Houston Museum of Natural Science. The addition of these centers to our list increased our geographic diversity by including Texas and Washington, D.C. (A complete list of science centers and locations is provided in the Appendix.) Estimated annual attendance, total exhibit square footage, and annual operating budget were confirmed via center web sites, annual reports, or phone calls to ensure they all had similar resources. The minimum criteria for inclusion in the list was a budget of 10 million dollars annually and visitation of at least 200,000. Centers were neither excluded nor included based on square footage, as reliable estimates of exhibit space versus total building space could not be obtained for all centers.

For the sample of small- and medium-sized science centers, an online alphabetical list of member science centers from the Association of Science-Technology Centers (“List of Science Centers in the United States” 2013) was numbered. A list of random numbers was generated at http://www.random.org and then each center that matched the first fifteen numbers in the list of random numbers was chosen. Centers were confirmed to be still in operation, not on the list of large centers already generated, and not in the same city as the large centers. If a center was excluded in this process, the next random number on the list was matched and confirmation continued in this manner until there was a total of 15 small- and medium-sized centers.

Next, in January 2014, the web sites of all the identified centers were visited and the page that listed all of their exhibits found. Counting everything the science center itself listed as an exhibit on those pages, the exhibit titles and brief one- to three-sentence description of each exhibit listed on that page were recorded. For example, the Museum of Science, Boston, lists their exhibits at http://www.mos.org/exhibits; on this page, each exhibit is listed with a title, such as “A Bird’s World,” followed by a short description, “Take a virtual tour of Acadia National Park in this exhibit, which includes a specimen of every bird found in New England.” The link following that description takes the viewer to a longer description, and the first paragraph on each of those individual exhibit pages was captured for the long description. Therefore, there were up to three pieces of data for each exhibit at each center: exhibit title, short exhibit description, and long exhibit description.

To determine which exhibits were related to agriculture, the titles and the short and long descriptions that explicitly used the term agriculture were noted first. Next the titles and descriptions of topics were read again to identify those that were related to agriculture, based on seven of the eight pathways of the National Agriculture, Food, and Natural Resources (AFNR) Career Cluster Content Standards (National Council for Agricultural Education 2009).

Each title and short and long exhibit description was qualitatively coded (Auerbach and Silverstein 2003; Patton 2002) as to whether or not it was related to agriculture. In other words, was the title or short or long description related to one or more of the eight pathways of the AFNR Career Clusters? We coded each as clearly related; probably related but somewhat unclear from the limited information given; probably not related but an argument could be made for its relatedness; or definitely not related. Some exhibits did not have content that was related to Ag-STEM but were definitely designed around Ag-STEM skills, such as observation, finding patterns, or modeling; these exhibits were coded specifically as skills and included in the counts of related exhibits. The author and a research assistant worked together to develop the codes and coded one large science center’s exhibits together. After they had agreed on the meaning of the codes, each coded half of the large and small science centers.

Special Note: The National Ag Science Center

Despite its name, the National Ag Science Center in Modesto, California, does not yet have a physical space, and therefore, was not part of our study. However, since they are already fluidly combining the traditional material of science centers with the agricultural context required to address problems of feeding more and more people, they serve as an example here. As Center Director Michelle Laverty notes, “Few [students] make the link between math and recipes, density and soils, or light and plant growth. Students also have a limited view of careers in agriculture” (Laverty 2014, 28). The National Ag Science Center also exemplifies the ideal that it doesn’t take a large-city science center to bring meaningful content to students. The students they serve in their county live at least two hours from San Francisco.

The Ag Science Center’s two main programs are examples of the ways existing science content can be contextualized with agriculture through hands-on exploration and through local partnerships. First, lab experiences in the mobile lab of the Ag Science Center connect typical experiments—such as testing pH or using a microscope—to agriculture and food production by testing soil pH or examining beneficial insects for crops under the microscope. Second, their summer camp paired local FFA students working in agriculture with middle-school campers using similar hands-on contextualized experiments and allowing the two groups of students to share with each other (Laverty 2014).

Results

Overall, of the large centers sampled, none had agriculture in the title or short exhibit description, and only four of 316 exhibits sampled explicitly had agriculture in the longer exhibit descriptions. However, fully 45 percent of the exhibits were at least probably agriculture-related based on the titles and long descriptions, 40 percent when considering the short descriptions. (See Table 2.)

Take, for example, the St. Louis Science Center, one of the large science centers examined. A list of some of the exhibits and their long descriptions appears in Table 3. The website did not list short descriptions at the time of analysis. None of the exhibit titles and only one description, for the Life Science Lab, explicitly uses the word agriculture. Yet only four of the 18 exhibits—the Energizer Machine kinetic sculpture, Planetarium, Experience Flight simulator, and Amazing Science Demonstrations—are not obviously related to agriculture in the AFNR Career Clusters, based on the titles and descriptions provided. The Planetarium and Amazing Science Demonstration shows may feature agriculture, however, and the Structures exhibit may have related content not obviously described on the website.

Of the smaller science centers sampled, overall nearly 60 percent of the exhibits are agriculture-related, even though none have the word agriculture explicitly in the title or short or long description. We also discovered that while smaller centers overall had higher rates of agriculture-related exhibits based on their titles and descriptions, the centers also tend to be more specialized. This meant there was a higher variation in the presence of agriculture-related exhibits among smaller science centers. For example, all the exhibits at the Ocean Science Exhibit Center at the Woods Hole Oceanographic Institute were agriculture-related due to the center’s overall ocean focus. On the other hand, only one of ten exhibits at the New Mexico Museum of Space History was coded as agriculture-related, as that museum dealt primarily with space history and exploration.

The overall range of related content was very rarely explicitly related to food and agriculture. Instead, exhibits dealing with basic sciences or engineering, or applied fields such as biotechnology, were prevalent in the agriculture-related exhibits. Exhibits dealing with animals or plants broadly, including those about evolution, were found. There were also a number of exhibits related to skills of science research, such as observation, math, and modeling, which are fundamental to both science and agriculture research practice.

Discussion

Large science centers tended to be more evenly split between related and non-related content and covered a broader range of content overall. Small centers were highly variable, ranging from a large amount of agriculture-related content to none. Some small science centers were actually just a planetarium theater, which might show agriculture-themed shows about life in space but did not indicate that this was the case. Overall, however, there were definitely many exhibits that could be related to agriculture with some reframing of existing content.

Given the existence of content that could be re-branded without costly and extensive renovation, we suggest several ways that science centers could start to use their exhibits and programs to highlight the challenge the world faces of feeding 9.6 billion people by 2050; by addressing the existing exhibits and programs, science centers can immediately begin to make those traditional offerings more effective at engaging the public in social issues (Worts 2011). Some international museums, especially, already have programs and exhibits on agriculture (“Tapping into Agriculture” 2014). Others already focus on issues of sustainability (Worts 2011; “Spotlights” 2014), though they may not explicitly relate sustainability to food production or bridge to more traditional agricultural topics.

First and foremost, science centers can highlight their existing exhibits that are agriculture-related simply by connecting the word agriculture explicitly with programs and exhibits. This could be done by posting additional signs on exhibits or components or by creating field trips or public tours on topics of agriculture, either docent-led or self-guided. For programming both in the science center and traveling to schools, educators could redesign school programs to use agriculture as a context but offer similar hands-on explorations already in place. For example, a DNA extraction laboratory experience could be set up in the context of understanding how plants fight disease or in the context of genetic engineering to produce more nutritious products such as beta-carotene-enhanced rice. Similarly, science centers could partner with with local agriculture research colleges and industries as well as with science research entities to create a special event day or adult evening science café around agriscience issues.

Many science centers have already begun implementing various sustainability measures, which they may or may not make obvious to their visitors. These may include installation of solar panels, as at the Maryland Science Center, food partnerships and waste reduction through recycling and composting, as at ECHO Lake Aquarium and Science Center in Brulington, Vt., or smarter water use, as at the North Carolina Museum of Natural Sciences’ Prairie Ridge Ecostation. These, too, can be directly tied to the problem of preserving resources for food production and distribution. Highlighting hunger problems that exist in the community gives these efforts a real local tie, making global, somewhat abstract problems such as climate change more relevant and motivating to individuals (Lachapelle et al. 2012).

Regardless of size, attendance, location, or operating budget, smaller science centers in rural areas have much to offer. This means teachers can use any science center to make Ag-STEM connections, even if they cannot travel outside their local area on a field trip. Science centers of all types can reach out to and work with agriculture and science teachers to encourage them to see these connections and offer their students a real-world problem as the context for their STEM learning, that of food production for our future population. They could market their professional development opportunities to a broader audience if they included agriculture teachers. If agriculture teachers consider the science centers as resources, they could work with center staff to find further connections between their curricula and the exhibits and programs. Botanical gardens, zoos, and aquaria have natural connections to agriculture based on their exhibitions of plants and animals and the related land use and resource needs, but these connections may be overlooked not only by agriculture teachers but also by the organizations themselves.

While we did not look specifically at agriculture, living history, or farm museums for their STEM-related content, we suspect that there are also existing exhibits in those museums that could be used to highlight Ag-STEM connections. These exhibits could be used, therefore, to talk about the challenges of feeding a growing population and the role of Ag-STEM research in addressing these issues, and the institutions could reach out to STEM teachers as a potential new audience as well. Moreover, agriculture museums and science centers could partner in these efforts, sharing each other’s strengths and building even larger partnerships. University Cooperative Extension, for example, the nexus between agricultural research and public outreach in the Land Grant system, exists in nearly every county of the United States, not just in college towns or large cities (National Institute of Food and Agriculture 2015).

Conclusion

This article has explored the need for public engagement around research efforts for agriculture and agriscience—including global sustainable agricultural production, nutrition, hunger, and food and food security—and some ways that science centers can support these efforts. Adding agricultural context to science centers can emphasize Ag-STEM connections for both school children and the general adult public. Engaging the public directly in co-creation of content (Tate 2012), framing issues and moving people to action (Kadlec 2009), and thinking more broadly about a science center’s mission and role in the community as related to food issues (Merritt 2012) will all help to address need for public involvement in meeting the long-term challenge of feeding a growing planet. At the same time, expanding the examination of food and agriculture can continue to serve more basic goals of public education and workforce development, particularly around Ag-STEM research.

The world is facing complex problems related to food that will require innovative agricultural science and STEM thinkers. Yet these thinkers cannot be fully supported in their efforts without communities that provide local input and develop a continual supply of well-prepared STEM workers. As science centers move to engage more with contemporary issues, they do not always need to completely overhaul their current operations to do so. With agriculture and food issues, the basic exhibits and programs often exist and may be addressed using a less costly re-framing and contextualization as a more immediate first step.

The author wishes to thank Christie Harrod for her assistance on this project.

About the Author

Kathryn Stofer, PhD, is Research Assistant Professor of STEM Education and Outreach at the University of Florida. She researches how people gather, access, and make use of current research information, especially around agriscience through science centers and in partnership with University Extension. She spent several years as an Earth science educator and exhibit manager at the Maryland Science Center.

References

Auerbach, C.F., and L.B. Silverstein. 2003. Qualitative Data. New York: New York University Press.

Bell, P., B. Lewenstein, A.W. Shouse, and M.A. Feder, eds. 2009. Learning Science in Informal Environments: People, Places, and Pursuits. Washington, DC: National Academies Press.

Carlone, H.B., and A. Johnson. 2007. “Understanding the Science Experiences of Successful Women of Color: Science Identity as an Analytic Lens.” Journal of Research in Science Teaching 44 (8): 1187–1218.

Carnevale, A.P., N. Smith, and M. Melton. 2011. STEM: Science, Technology, Engineering, Mathematics. Washington, DC: Georgetown University Center on Education and the Workforce.

Committee on Prospering in the Global Economy of the 21st Century : An Agenda for American Science and Technology; Committee on Science, Engineering, and Public Policy (US), 2007. Rising above the Gathering Storm: Energizing and Employing America for a Brighter Economic Future. Washington: National Academies Press.

Dallas, D. 2006. “Café Scientifique—Déjà Vu.” Cell 126 (2): 227–229.

Enderlin, K.J., and E.W. Osborne. 1992. “Student Achievement, Attitudes, and Thinking Skill: Attainment in an Integrated Science/agriculture Course.” Paper presented at the Nineteenth Annual national Agricultural Education Research Meeting, St. Louis, MO.

Falk, J.H., and L.D. Dierking. 2000. Learning from Museums: Visitor Experiences and the Making of Meaning. Lanham, MD: AltaMira Press.

———. 2010. “The 95 Percent Solution.” American Scientist 98 (6): 486. doi:10.1511/2010.87.486.

Godfray, H.C.J., J.R. Beddington, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, J. Pretty, S. Robinson, S.M. Thomas, and C. Toulmin. 2010. “Food Security: The Challenge of Feeding 9 Billion People.” Science 327 (5967): 812–818. doi:10.1126/science.1185383.

Goecker, A.D., P.G. Smith, E. Smith, and R. Goetz. 2010. Employment Opportunities for College Graduates in Food, Renewable Energy, and the Environment: United States, 2010 – 2015. http://www3.ag.purdue.edu/USDA/employment/pages/default.aspx (accessed June 6, 2015).

Guillou, M., and G. Matheron. 2014. The World’s Challenge. Dordrecht: Springer Netherlands. http://link.springer.com/10.1007/978-94-017-8569-3 (accessed June 6, 2015).

Herrera, F.A., S. Hurtado, and M.J. Chang. 2011. “Maintaining Career Aspirations in Science, Technology, Engineering, and Mathematics (STEM) among College Students.” Presented at the Association for the Study of Higher Education in Charlotte, NC.

Hillison, J. 1996. “The Origins of Agriscience: Or Where Did All That Scientific Agriculture Come From?” Journal of Agricultural Education 37 (4): 8–13.

Kadlec, A. 2009. “Mind the Gap.” Museums & Social Issues 4 (1): 37–54. doi:10.1179/msi.2009.4.1.37.

Lachapelle, E., C.P. Borick, and B. Rabe. 2012. “Public Attitudes toward Climate Science and Climate Policy in Federal Systems: Canada and the United States Compared: Public Attitudes toward Climate Science and Climate Policy in Federal Systems.” Review of Policy Research 29 (3): 334–357. doi:10.1111/j.1541-1338.2012.00563.x.

Laverty, M. 2014. “Exploring Agricultural Sciences and Careers.” ASTC Dimensions 16 (2): 28–31.

Leaders of Academies of Sciences. 2012. “Energy and Water Linkage: Challenge to a Sustainable Future.” G-Science Academies. http://sites.nationalacademies.org/International/International_080840 (accessed June 7, 2015).

“List of Science Centers in the United States.” 2013. Wikipedia, the Free Encyclopedia. http://en.wikipedia.org/w/index.php?title=List_of_science_centers_in_the_United_States&oldid=553884333 (accessed June 7, 2015).

Maltese, A.V. 2008. “Persistence in STEM: An Investigation of the Relationship between High School Experiences in Science and Mathematics and College Degree Completion in STEM Fields.” Ph.D. dIssertation, University of Virginia.

McCallie, E. 2010. “Argumentation among Publics and Scientists: A Study of Dialogue Events on Socio-Scientific Issues.” Doctoral dissertation, King’s College London.

Meinwald, J., and J.G. Hildebrand, eds. 2010. Science and the Educated American: A Core Component of Liberal Education. Cambridge, MA: American Academy of Arts and Sciences. http://www.amacad.org/pdfs/SLACweb.pdf (accessed June 7, 2015).

Merritt, E. 2012. “Because Food Can Change the World.” Museums & Social Issues 7 (1): 13–22. doi:10.1179/msi.2012.7.1.13.

Miller, J.D. 2010. “The Conceptualization and Measurement of Civic Scientific Literacy for the Twenty-First Century.” In Science and the Educated American: A Core Component of Liberal Education, J. Meinwald and J.G. Hildebrand, eds. Cambridge, MA: American Academy of Arts and Sciences. http://www.amacad.org/pdfs/slacweb.pdf (accessed June 7, 2015).

Museum of Science, Boston. 2014. “A Bird’s World.”. http://www.mos.org/exhibits/birds-world (accessed June 7, 2015).

National Commission on Excellence in Education. 1983. A Nation at Risk: The Imperative for Educational Reform. A Report to the Nation and the Secretary of Education. Washington, DC: National Commission on Excellence in Education.

National Council for Agricultural Education. 2009. “National Agriculture, Food and Natural Resources (AFNR) Career Cluster Content Standards.” https://www.ffa.org/SiteCollectionDocuments/finalafnrstandardsv324609withisbn_000.pdf (accessed June 7, 2015).

National Institute of Food and Agriculture, United States Department of Agriculture. 2015. “Extension.” http://nifa.usda.gov/extension (accessed June 7, 2015).

National Research Council. 2009. Transforming Agricultural Education for a Changing World. Washington, DC: National Academies Press. http://www.nap.edu/catalog.php?record_id=12602 (accessed June 7, 2015).

National Research Council (U.S.). 1996. National Science Education Standards : Observe, Interact, Change, Learn. Washington, DC: The National Academies Press.

Oakes, J. 1986. “Keeping Track, Part 1: The Policy and Practice of Curriculum Inequality.” Phi Delta Kappan 68 (1): 12–17.

Oakes, J., and M. Saunders. 2008. Beyond Tracking: Multiple Pathways to College, Career, and Civic Participation. Cambridge, MA: Harvard Education Press.

Patton, M. 2002. Qualitative Research & Evaluation Methods. 3rd ed. Thousand Oaks, CA: Sage.

Phipps, L.J., E.W. Osborne, J.E. Dyer, and A.L. Ball. 2008. Handbook on Agricultural Education in Public Schools. 6th ed. Clifton Park, NY: Thomson Delmar Learning.

Rivet, A.E., and J.S. Krajcik. 2008. “Contextualizing Instruction: Leveraging Students’ Prior Knowledge and Experiences to Foster Understanding of Middle School Science.” Journal of Research in Science Teaching 45 (1): 79–100. doi:10.1002/tea.20203.

Rogoff, B. 2003. “Development as Transformation of Participation in Cultural Activities.” In The Cultural Nature of Human Development, 37–62. New York: Oxford University Press.

S1057 Multistate Research Project. 2012. “S1057: A Framework for Secondary Schools Agriscience Education Programs That Emphasizes the STEM Content in Agriculture.” http://aec.ifas.ufl.edu/docs/docs/AgStem/S1057%20project%20narrative.pdf (accessed June 8, 2015).

Schmidhuber, J., and F.N. Tubiello. 2007. “Global Food Security under Climate Change.” Proceedings of the National Academy of Sciences 104 (50): 19703–8. doi:10.1073/pnas.0701976104.

“Spotlights.” 2014. ASTC Dimensions, March/April 2014.

Tate, N.B. 2012. “Museums as Third Places or What? Accessing the Social without Reservations.” Museums & Social Issues 7 (2): 269–283. doi:10.1179/msi.2012.7.2.269.

Thoron, A.C., and B.E. Myers. 2008. “Agriscience: Sustaining the Future of Our Profession.” The Agricultural Education Magazine 80 (4): 9-11.

Vygotsky, L. 1978. “Interaction between Learning and Development.” In Mind in Society, M. Cole, V. John-Steiner, S. Scribner, and E. Souberman, eds., 79–91. Cambridge, MA: Harvard University Press.

Walheimer, M. 2012. “2012 World’s Top Ten Science Centers.” Museumplanner.org. January 24. http://museumplanner.org/worlds-top-10-science-centers/ (accessed June 8, 2015).

White, J.L. 2005. “Persistence of Interest in Science, Technology, Engineering, and Mathematics: An Analysis of Persisting and Non-Persisting Students.” Ph.D. dissertation, The Ohio State University.

Wilson, R.E., and J. Kittleson. 2013. “Science as a Classed and Gendered Endeavor: Persistence of Two White Female First-Generation College Students within an Undergraduate Science Context.” Journal of Research in Science Teaching 50 (7): 802–825. doi:10.1002/tea.21087.

Worts, D. 2011. “Museums Rising to the Challenge of ‘Social Relevance Circa 2012.'” Museums & Social Issues 6 (2): 219–227. doi:10.1179/msi.2011.6.2.219.

 

Engaging Parents in Early Childhood Learning: An Issue of Civic Importance

Michelle Kortenaar,
Sciencenter
Allison Sribarra,
Sciencenter
Tamar Kushnir,
Cornell University

 

 

 

 

 

 

 

 

 

 

 

 

At the Sciencenter, a hands-on science museum in Ithaca, NY, we watch young children learn through play. They explore, make observations and inferences, and perform experiments just like scientists. What we see every day on the museum floor has also been researched and documented at Cornell’s Early Childhood Cognition Lab and other labs around the country. Children make inferences about cause and effect and use statistical evidence to make predictions about their world (Kushnir and Gopnik 2005; Kushnir et al. 2010). The same curiosity that leads to exploratory play also leads to explanation-seeking behavior. Children ask “why” when events are unexpected or surprising (Legare et al. 2010). In other words, young children, given the opportunity to explore, do so in the same ways that scientists do.

At the Sciencenter, we have also learned that not all children have the opportunity to experience rich play environments and the freedom to explore and experiment. There is a gap between what researchers know about early childhood cognitive development and how some parents, caregivers, and educators interact with the children in their care. We see evidence of this knowledge gap every day as parents and caregivers interact with their children at our exhibits and out in the world. We see parents concerned that their children will get too wet if they play with water, or parents who move their children along to new activities when the children are engaged in repetition to see if the outcome stays the same.

Giving parents the tools and confidence to encourage their children’s scientific exploration and engaging parents and caregivers in current research in cognitive development are matters of civic importance, and time is of the essence.

Early childhood is a time of rapid development. By age three, for example, children have already learned 50 percent of what they will eventually know as adults (Landry 2005). Young brains start pruning neural connections that go unused at age four, and—remarkably—children’s brains are 90 percent fully developed by age five (Woodhead 2006). We believe that giving parents the confidence and tools to allow their children to explore like young scientists will help create the best learning environments possible for young children and set the stage for future learning.

Since 2012, researchers from Cornell’s Early Childhood Cognition (ECC) Lab have been using the museum floor at the Sciencenter as a research space. By working at the Sciencenter, ECC Lab researchers are able to recruit child participants for their studies. The ECC Lab is discovering how children think and learn while they are playing games with puppets and stickers. One recent study, conducted at the Sciencenter, looked at the effect of choice on sharing behavior (Chernyak and Kushnir 2013).

While children participate in research, their families are able to watch research in action and discuss the latest theories about how children learn with real scientists in this “living exhibit.”

The Science Education for New Civic Engagements and Responsibilities-Informal Science Education (SENCER-ISE) partnership projects gave us the perfect opportunity to leverage this research partnership and engage undergraduate students in real-world learning while giving parents the tools and confidence to support their children’s explorations. As one undergraduate participant said, “In the lab, we examine children’s learning and thinking using activities and games specifically designed for a controlled lab setting…. This project examines children’s learning in the organic and messy real world to see how they learn in informal learning environments.”

As part of the SENCER-ISE project, Cornell undergraduates have helped develop and test signs to encourage parents and children to make connections between different exhibits and other areas of their lives through the use of common vocabulary. The first set of exhibit signs has the word “water” and an image of a water drop. The signs are placed on aquariums, water play areas, and a model of human blood. Undergraduate researchers from the ECC Lab are studying the kinds of parent-child conversations that arise as a result of the prompt from the signs. This is a real-world application of a theory undergraduates learn in their “Concepts and Theories in Childhood” course: children expect to find commonalities between things that are labeled with the same word. As is always true in the real world, there have been some surprises. Student researchers have found that “parents and children engaged in meaningful and purposeful play at the water exhibits.” “Parents were also likely to ask their children causal and predictive questions, as well as offer causal explanations to their children’s questions.” The results also indicated, however, that the signs did not promote conversations. In fact, “while parents and children engaged with exhibit materials, they rarely noticed the signs.” That is why in the second year of the SENCER-ISE grant, we have introduced a “scavenger hunt” to encourage children to search for the signs

In addition, undergraduate and graduate students have shared current research at workshops for parents and teachers both at the museum and at Head Start sites in the county. Since 2014, over 460 adults have attended these workshops, which highlight some of the research into early childhood cognitive development and provide tools to support their children’s science exploration. Early childhood teachers have learned that even young children can and do use science and science skills and have practiced science process skills. Through these workshops, undergraduate researchers have had the opportunity to apply their theoretical learning about early childhood cognition in an informal setting, creating richer learning experiences for them as scientists and students of children’s learning.

As a result of the SENCER-ISE project, we are confident that the undergraduate students see the topic of early childhood development not only as something they are researching, but as an issue of civic importance. They experience the real-world applications of their theoretical learning and see the differences between learning environments and parenting styles firsthand.

In turn, we at the Sciencenter have access to current research and expert advisors so that we can continue to integrate research into exhibits, programming, and our outreach efforts in ways that improve the learning environments for the young children in our community. We have been honored to be a part of the SENCER-ISE project and look forward to continuing this work.

About the Authors

Michelle Kortenaar serves as the Director of Education at the Sciencenter, a position she has held since 2011. Ms. Kortenaar has a formal science education background, both as a master teacher and as a department head at the middle and high school levels, as well as 6 years of informal science education experience. She has a master’s in education from Queen’s University in Ontario, Canada.

Allison Sribarra has been the Grant Administrator at the Sciencenter since 2012. She has worked closely with Sciencenter educators on early childhood programming. She has a decade of experience working with non-profit grant management and administration and holds a master’s of public policy from the University of Maryland.

Tamar Kushnir is Associate Professor at the College of Human Ecology at Cornell University. She received her M.A. in Statistics and Ph.D. in Cognitive Psychology from the University of California, Berkeley, and was a Post-Doctoral fellow at the University of Michigan. Dr. Kushnir’s research examines mechanisms of learning in young children. She continues to explore the role that children’s developing knowledge – in particular their social knowledge – plays in learning, a question with implications for the study of cognitive development as well as for early childhood education.

References

Chernyak, N., and T. Kushnir. 2013. “Giving Preschoolers Choice Increases Sharing Behavior.” Psychological Science 24 (10): 1971–1979. http://pss.sagepub.com/content/24/10/1971 (accessed May 9, 2015).

 

 

Kushnir, T., F. Xu, and H.M. Wellman. 2010. “Young Children Use Statistical Sampling To Infer Preferences of Others.” Psychological Science 21 (8): 1134–1140. http://pss.sagepub.com/content/21/8/1134 (accessed May 9, 2015).

 

Kushnir, T., and A. Gopnik. 2005. “Children Infer Causal Strength from Probabilities and Interventions.” Psychological Science 16 (9): 678–683. http://pss.sagepub.com/content/16/9/678 (accessed May 9, 2015).

 

Landry, S.H. 2005. Effective Early Childhood Programs: Turning Knowledge Into Action. Austin: University of Texas System with Rice University. http://www.childrenslearninginstitute.org/library/publications/documents/Effective-Early_Childhood-Programs.pdf (accessed May 9, 2015).

Legare, C.H., S.A. Gelman, and H.M. Wellman. 2010. “Inconsistency with Prior Knowledge Triggers Children’s Causal Explanatory Reasoning.” Child Development 81(3): 929–944.

 

Woodhead, Martin. 2006. Changing perspectives on early childhood: theory, research and policy. Geneva?: UNESCO.

http://unesdoc.unesco.org/images/0014/001474/147499e.pdf (accessed May 9, 2015).

 

Weird Science: Ten Years of Informal Science Workshops

Robert E. Pyatt,
Ohio State University

Introduction

As educators, we are frequently challenged to develop interesting and educationally robust methods for the promotion of critical thinking in our classrooms. Once our students have graduated, the opportunities for them to further develop their critical thinking skills are greatly diminished. For the last ten years I have conducted informal science outreach workshops outside of the classroom setting, which I call “Weird Science.” In the discussion that follows, I’ll introduce the concepts behind these workshops and the strategies I have used to promote science and critical thinking skills among diverse audiences. I’ll conclude with some challenges I have encountered and provide anecdotal feedback from attendees on the significance of these events.

Weird Science

Weird Science workshops are part journal club, part citizen science project, and part stand-up comedy. Having previously written for the Annals of Improbable Research, I have adopted their slogan of making “people laugh and then think.” Through Weird Science I have appeared before diverse audiences including lunch clubs, summer school programs, book clubs, science fiction conventions, and MENSA chapters in informal learning environments such as public libraries, hotel ballrooms, gymnasiums, waterparks, bars, restaurants, and churches. Each session typically lasts from sixty to ninety minutes and includes a review of three to four science articles and participation in a hands-on experiment. Both parts are designed to be interactive and foster maximum audience participation in the form of a group discussion on data review/analysis and a hands-on activity. The content is tailored for either adult or family audiences.

The educational framework of Weird Science is based on training I received in the philosophical, pedagogical, and scientific aspects of education through the Fellowships in Research and Science Teaching (FIRST) program, which is cooperatively organized through Emory University, Clark Atlanta University, Spelman College, and Morehouse College and School of Medicine. This fantastic program combines a traditional post-doctoral research experience with formal instruction on teaching and learning methods, with a mentored teaching experience at one of the minority serving institutions in the Atlanta area. Specifically, I have covered topics drawn from Barbara Davis’s book Tools for Teaching, which was used as a text for this program: encouraging student participation in discussions, tactics for effective questioning, fielding student questions, and alternatives to lecturing. Although the book focuses on formal classroom techniques, I have found many of its principles to be applicable to informal teaching as well.

Figure 1. The author presenting a Weird Science workshop in late 2014. The caption on the image behind the author reads “Because Chocolate Can’t Get You Pregnant”

Weird Science contains many of the strands recently outlined by the National Research Council for learning in informal spaces. These include reflecting on science as a process, participating in science activities involving scientific language and tools, manipulating, testing, and exploring the natural and physical world, and experiencing excitement and motivation to learn about our world (Bell et al. 2009). My goal is to make each one a funny, educational, and informative session for everyone, regardless of their age or science background.

Part Journal Club

The majority of a Weird Science workshop is composed of audience analysis and discussion of scientific articles as typically found in a science journal club. The types of articles I draw from include primary, peer-reviewed literature as well as reports from the mass media. In many cases, this is the first time audience members have ever been exposed to a peer-reviewed publication, and I find demystifying the scientific literature to be an important goal. While the prospect of fostering a discussion of primary scientific articles involving individuals with diverse science backgrounds may seem daunting, the selection of appropriate papers has been the key to success. I have found that the most appropriate types of publications typically include topics with a minimum of background information needed to understand the hypothesis, experimental methodologies with simple designs used to address that question, and most importantly a subject which can quickly grab attention and stoke curiosity. For example, little background knowledge is needed to understand the importance of identifying methods to safely transplant animals to new habitats, such as those discussed in “Transplanting Beavers by Airplane and Parachute” (Heter 1950). Participants can easily understand the experimental design in “Testing the Danish Legend That Alcohol Can Be Absorbed through Feet: Open Labelled Study” (Hansen 2010), where subjects immersed their feet in vodka for three hours and then monitored their blood alcohol levels.   Finally, the papers already mentioned and many others, including “My Baby Doesn’t Smell as Bad as Yours: The Plasticity of Disgust” (Case et al. 2006), “Robot Vacuum Cleaner Personality and Behavior” (Hendriks et al. 2011), and “Do Women Spend More Time in the Bathroom Than Men?” (Baille et al. 2009) illustrate how a great subject can quickly pique interest.

By using these examples, and many others over the last ten years, I have been able to guide participants with little to no formal training in science through a critical review of the scientific methodology, data analysis, and conclusions presented in these publications. For example, when asked to design their own method to test the myth of alcohol absorption through feet, many audiences initiated spirited discussions concerning what type of alcohol to use (percentage alcohol content) and what controls would be appropriate for such a study. Participants then contrasted their experimental designs to the one used in the published report, which opted for vodka (37.5 percent alcohol by volume) but included no real controls (Hansen 2010). For the study “Robot Vacuum Cleaner Personality and Behavior” (Hendriks et al. 2011), which surveyed a population of six individuals as part of their methodology, participants correctly recognize that such a small sample size does not provide statistically reliable support for the conclusions drawn by the authors. The differences between hypothesis-driven research and observational types of science can be illustrated through case studies such as “Pharyngeal Irritation after Eating Cooked Tarantula” (Traub et al. 2001). Mass media articles like “Swedish Cows Make Lousy Earthquake Detectors” (The Local 2009) can be used to explain what peer review is and to promote a discussion on the differences between peer-reviewed scientific literature and reports from mass media sources. The history of science can be explored through publications such as “The Behavior of Young Children under Conditions Simulating Entrapment in Refrigerators” (Bain et al. 1958). In the end, science articles like these are ideal for stimulating discussions about the scientific method and data analysis in individuals, regardless of their formal scientific training.

While finding appropriate journal articles with these characteristics within the vast body of published literature may seem overwhelming, there are actually many resources that one can mine. Both the Annals of Improbable Research and the Journal of Irreproducible Results feature odd science topics in every issue. There are also a wealth of blogs including Sci-Curious (https://www.sciencenews.org/blog/scicurious) and Seriously, Science? at Discover Magazine (http://blogs.discovermagazine.com/seriouslyscience/), which highlight strange science publications. Additionally, many end-of-year “best of” lists now include odd science discoveries in their categories. Fortunately, I have always had some form of academic position that has included access to nearly all of these publications through the fantastic library resources found at colleges and universities across the United States. With the gradual adoption of open access policies, many of these articles are now accessible for free to participants after the workshop.

Part Citizen Science Project

The last third of a Weird Science session involves audience participation in examining a scientific question. It has been suggested that involving the public in citizen science projects can impact their understanding of science content and the process of science (Cohn 2008). While most citizen science projects are long-term studies in which participants play a minor role, these exercises are smaller in scale and are selected so that participants can be actively involved in both data collection and interpretation. I again draw directly from the primary literature for inspiration; previous topics have included stall preference in public bathrooms (Christenfeld 1995), left/right-side preference for tasks such as holding a small dog (Abel 2010), and whether Dippin’ Dots (tiny frozen spheres of ice cream) can cause ice cream headache (Kaczorowski and Kaczorowski 2002).

While the exact series of steps differs depending on the topic of investigation, this section typically includes a brief discussion on the background knowledge behind a specific scientific question and an experiment in the form of a hands-on activity or survey to test the discussed hypothesis. For example, Chittaranjan and Srihari published a report in the Journal of Clinical Psychiatry examining nose- picking behavior in two hundred school-age children in Bangalore City (Chittaranjan and Srihari 2001). As the instrument used in that study is included in the article, I would hand out that short survey and ask that any interested individual anonymously answer the questions on their nose-picking behavior. Once these responses are collected, I would introduce the publication and discuss any limitations in their methodology, in this case issues such as reporting honesty by respondents and response selection bias when using surveys. The group then discusses the results from the paper allowing attendees to compare their own personal answers to questions like “Do you believe that nose picking is a bad habit?” and “Do you occasionally eat the nasal matter that you have picked?” to the complete data set from the article (Chittaranjan and Srihari 2001).

While I vary the articles I cover for every Weird Science workshop, I conduct the same scientific experiment for all presentations during a calendar year running from July to June. This allows me to amass a large data set examining a specific hypothesis and to correlate results from the Weird Science experiments with results from the original manuscript. Most venues invite me back annually, which means I can present the cumulative data set from the complete year upon my return visit and allow the audience to draw parallels and conclusions from our data in relation to the original published study. Most importantly, we discuss how no scientific study is perfect and identify the limitations of our own study methods, which impact how we can analyze the data and draw conclusions from it.

Part Stand-Up Comedy

In the last few years, publications have appeared examining the use of humor in science communication with both positive (Roth et al. 2010; Pinto et al. 2013) and negative conclusions (Lei et al. 2010). While acknowledging that there can be positive effects of humor in education, Lei et al. also comment that some types of humor can be viewed as offensive and therefore unfit for a classroom setting. Additionally, humor that is excessive or forced may also be viewed as negative and can undermine the credibility of the educators (Lei et al. 2010). Through an analysis of video tape recordings of first-year teachers, Roth et al. describe multiple types of humor in the classroom and identify laughter as “a collective interactive achievement of the classroom participants that offsets the seriousness of science as a discipline” (Roth et al. 2011).

Figure 2. Clay creations made by attendees in 2013, testing whether working with modeling clay can alleviate chocolate cravings.

I rely heavily on humor as an instructional and entertainment tool that takes three general forms. First, many of the articles themselves contain classic bits of humor I can draw from directly. For example, in the study “Observing a Fictitious Stressful Event: Haematological Changes, Including Circulating Leukocyte Activation,” the authors determine whether immune cells are activated when participants view a fictitious stressful event by having them watch “The Texas Chainsaw Massacre” (Mian et al. 2003). In commenting on the study’s conclusions disproving the Danish myth of absorbing alcohol through the feet, the authors write, “Driving or leading a vessel with boots full of vodka seems to be safe” (Hansen et al. 2010). Secondly, as I typically use PowerPoint as a method of delivering figures and images from these publications, I can draw on the extensive collection of clip art from the internet to graphically enhance my presentations. Finally, the responses from participants themselves during the experimental portion are often excellent sources of humor. When reviewing the results of our test to see whether a modelling clay activity can alleviate chocolate cravings, I show pictures of some of the clay creations made during that activity. While I encourage everyone to treat the experiments with an appropriately “serious” attitude, I see a wide range of interpretations. In response to a question concerning their favorite ice cream flavor, participant answers included “blue,” “orange sherbet,” and “Ben and Jerry’s Vanilla Nut Cream of the shimmering hills crowded among the snowy valley.” As part of a study on body hair patterns, participants responded to a question on unusual body hair locations with answers including “I have it on the tops of my feet but no, I am not Frodo Baggins” and “Only when I am around my cat.” While not necessarily fulfilling the intent of the questions asked, these responses are funny in a good-natured way and provide a great teachable moment to illustrate some of the challenges of using surveys as a research instrument.

It has been suggested that humor may not be an appropriate tool for science communication as audiences lack the background knowledge to get the jokes (Marsh 2013), speakers present themselves as elite individuals (science experts) elevated above the audience (Marsh 2013), or because humor can only be derived when the audience asserts their superiority over the shortcomings of the particular situation (Billig 2005). I would instead argue that humor is a powerful tool in any educational setting, and that these pitfalls are avoided by the organization and delivery of Weird Science. The audience members themselves serve as the scientists as they work through the various analysis and experimentation exercises. Consequently I serve more as a “guide on the side” rather than as an all-knowing “sage on the stage.” My selection of articles specifically ensures that extensive background information is not needed to get any particular joke and shows that critical review is an integral part of the scientific process, which need not include an air of superiority. Finally, humor is essential to making these sessions entertaining and promoting a general feeling that an audience’s time has been well spent.

Putting It All Together

To demonstrate how all of these parts come together to form a complete program, I’ll describe a recent workshop I presented at the Multiple Alternative Realities Convention (MarCon) in Columbus, Ohio. The workshop lasted approximately seventy-five minutes and began with a discussion of “Do Bees Like Van Gogh’s Sunflowers?” (Chittka and Walker 2006). I used this paper to foster a discussion on the study’s methods, which measured the preference of bees to pictures with and without flowers, using different media for each image; these included posters with reprints of original works, oil on canvas, and an acrylic on canvas board reproduction of Van Gogh’s painting by another artist. Audiences noted that the inconsistent use of media complicated the interpretation of bees’ preferences for the images. Next we reviewed the results from the previous year’s citizen science project “The Use of a Modeling Clay Task to Reduce Chocolate Craving” (Andrade et al. 2012). After reviewing the results from the study, the audience contrasted the published methods with the study they participated in and noted that while the original had selected for individuals who self-described as “chocolate lovers,” our population was not pre-screened in such a way. This may have contributed to our failure to reproduce the study’s findings.

Next the paper “Skipping and Hopping of Undergraduates: Recollections of When and Why” (Burton et al. 1999) was presented. The authors of the paper highlight that one percent of undergraduates surveyed report never having skipped or hopped, which the audience noted may reflect more on the selective memories of the respondents and the limitations of surveys as experimental instruments than on actual events. The case report “The Case of the Haunted Scrotum” (Harding 1996) was used to illustrate the difference between hypothesis-based research and observational science. Finally, the audience was challenged to design an experiment to test whether watching different types of television programs would impact the amount of food being consumed during snacking, as studied in the paper “Watch What You Eat: Action-related Television Content Increases Food Intake” (Tal et al. 2014). We closed the workshop with a new citizen science project examining the types of rubber glove creations attendees would make in the setting of a pediatric doctor’s office to calm an upset child. Once I recorded the types of creations made, the audience then compared their creations to child preferences in the study “The ‘Jedward’ versus the ‘Mohawk’: A Prospective Study on a Paediatric Distraction Technique” (Fogarty et al. 2014).

Challenges

While I have loved presenting these workshops, they have not been without their challenges. Because of the diversity of scientific backgrounds in audience members, I have seen participants with more science experience unintentionally dominate discussions. The job of moderator is an important one and requires a sensitive touch in these informal settings to maintain a balance between a lively group discussion and basic crowd control. Additionally, while I have often found myself presenting in bars, I have luckily never found the inclusion of alcohol to be a negative factor. However, its presence can change the discussion dynamics, and I am always on guard in such situations for alcohol-related complications such as heckling.

I find identifying appropriate articles to be relatively easy, but designing the hands-on component has proven to be more complicated. The diversity of locations where I present limits the types of hands-on experiments that can practically be done. Surveys have become an easy solution to these logistical issues, but I have tried to use them only sparingly, when I can’t identify another subject that involves more active experimentation. As a majority these workshop are free, the cost of any reagents (ice cream, chocolate, rubber gloves, etc.) comes directly out of my own pocket, and a lack of external funding further limits experimental complexity.

Occasionally, I have perceived a slight air of disappointment from participants when our attempts to replicate a published scientific study fail, as in the clay modeling activity to alleviate chocolate cravings. While situations such as this provide excellent educational opportunities to discuss how the process of science is full of errors and failed experiments (for whatever reason), a lack of exciting results does work against the entertainment goal of the workshops. I have tried to redirect negative feelings through analogies to the TV show Mythbusters by discussing how replication is the foundation of science and how our negative results may have disproved a questionable hypothesis (with caveats regarding differences between our experimental method and the published study).

Anecdotal Feedback

I have honestly been thrilled with the level of success I have experienced with Weird Science. I have never made a formal attempt to evaluate the effectiveness of these sessions or track my attendance numbers, but written responses to the experimentation portion over the last four years can be used to at least measure the number of attendees participating annually. For each year from 2011 through 2014, between 192 and 207 people participated, with ages ranging from 17 to 79 years. This included approximately equal numbers of male and female respondents. I would estimate that at any one workshop, between one half to two thirds of attendees participate in the science experiment.

Finally, the success of these sessions has led me to create a Facebook group called “Weird Science with Rob Pyatt” to continue similar scientific discussions outside of the workshops by using social media. In preparation for this paper, I asked group members who had previously attended a workshop a few questions regarding their views on and experiences with Weird Science sessions. While this is far from a scientific evaluation, I think these anecdotal responses begin to illustrate the value in this unique informal education format. When asked if something surprised them about a Weird Science workshop, two individuals responded “The amount of time devoted to discussing data collection and study. I learned more about how science works than any actual science itself,” and “Science can be fun.” When asked why they took the time to attend a Weird Science workshop, answers included “Because you don’t just lecture, you involve everyone in the process so that they understand how a scientific study should work,” and “Learning and entertainment!” One final comment from a participant concerning why they have attended a session in the past, “You engagingly discuss science in a way that I who has a minimal science background and my fiancé who has a degree in chemistry can both enjoy.” I’ll close with an unsolicited comment I received in 2013 from a mother who had attended a session with her daughter; I hope it serves to illustrate the impact these workshops can have. She posted “Just wanted to let you know that you are an influence on young minds. My mom was talking about some ‘study’ she saw on TV (with a test group of one) and my daughter immediately started countering with all the reasons this was NOT a scientifically valid study. So proud!”

About the Author

Robert E. Pyatt is an Associate Director of the Cytogenetics and Molecular Genetics Laboratories at Nationwide Children’s Hospital and an Assistant Professor-Clinical in the Department of Pathology at Ohio State University. He received his M.S. from Purdue University and Ph.D. from Ohio State University. Rob is also the chair of the JW Family Science Extravaganza, a satellite event of the USA Science and Engineering Festival held annually in Hilliard, Ohio.

References

Abel, E.L. 2010. “Human Left-Sided Cradling Preferences for Dogs.” Psychological Reports 107 (1): 336–338.

Andrade, J., S. Pears, J. May, and D.J. Kavanagh. 2012. “Use of a Clay Modeling Task to Reduce Chocolate Craving.” Appetite 58: 955–963.

Baille, M.A., S. Fraser, and M.J. Brown. 2009. “Do Women Spend More Time in the Bathroom Than Men?” Psychological Reports 105:789–790.

Bain, K., M.L. Faegre, and R.S. Wyly. 1958. “The Behavior of Young Children under Conditions Simulating Entrapment in Refrigerators.” Pediatrics 22: 628–647.

Bell, P., B. Lewenstein, A. Shouse, and M. Feder. 2009. Learning Science in Informal Environments: People, Places, and Pursuits. Washington, DC: National Academies Press.

Billig, M. 2005. Laughter and Ridicule: Towards a Social Critique of Humor. London: SAGE.

Burton, A.W., L. Garcia, and C. Garcia. 1999. “Skipping and Hopping in Undergraduates: Recollections of When and Why.” Perceptual and Motor Skills 88: 401–406.

Case, T.I., B.M. Repacholi, and R.J. Stevenson. 2006. “My Baby Doesn’t Smell as Bad as Yours: The Plasticity of Disgust.” Evolution and Human Behavior 27 (5): 357–365.

Chittaranjan C., and B.S. Srihari. 2001. “A Preliminary Survey of Rhinotillexomania in an Adolescent Sample.” Journal of Clinical Psychiatry 62 (6): 426–431.

Chittka, L., and J. Walker. 2006. “Do Bees Like Van Gogh’s Sunfowers?” Optics and Laser Technology 38: 323–328.

Christenfeld, N. 1995. “Choices from Identical Options. Psychological Science.” 6 (1): 50–55.

Cohn, J.P. 2008. “Citizen Science: Can Volunteers Do Real Research?” Bioscience. 58: 192–197.

Davis, B.G. 1993. Tools for Teaching. San Francisco: Jossey-Bass.

Fogarty, E., E. Dunning, K. Stanley, T. Bolger, and C. Martin. 2014. “The ‘Jedward’ Versus the ‘Mohawk’: A Prospective Study on a Paediatric Distraction Technique.” Emergency Medicine Journal 31: 327–328.

Hansen, C.S., L.H. Faerch, and P.L. Kristensen. 2010. “Testing the Validity of the Danish Urban Myth That Alcohol Can Be Absorbed through Feet: Open Labelled Self Experimental Study.” BMJ 341: 1–3.

Harding, J.R. 1996. “The Case of the Haunted Scrotum.” Journal of the Royal Society of Medicine 89 (10): 600.

Hendriks, B., B. Meerbeek, S. Boess, S. Pauws, and M. Sonneveld. 2011. “Robot Vacuum Cleaner Personality and Behavior.” International Journal of Social Robotics 3: 187–195.

Heter, E., 1950. “Transplanting Beavers by Airplane and Parachute.” The Journal of Wildlife Management 14 (2): 143–147.

Holtzclaw, J.D., L.G. Morris, R. Pyatt, C.S. Giver, J. Hoey, J.K. Haynes, R.B. Gunn, D. Eaton, and A. Eisen. 2005. “FIRST: A Model for Developing New Science Faculty.” Journal of College Science Teaching 34: 24–29.

Kaczorowski, M., and J. Kaczorowski. 2002.”Ice Cream Evoked Headaches (ICE-H) Study: Randomized Trial of Accelerated Versus Cautious Ice Cream Eating Regimen.” BMJ 325: 21–28.

Lei, S.A., J.L. Cohen, and K.M. Russler. 2010. “Humor on Learning in the College Classroom: Evaluating Benefits and Drawbacks from Instructors’ Perspectives.” Journal of Instructional Psychology 37(4): 326–331.

The Local. 2009. “Swedish Cows Make Lousy Earthquake Detectors: Study.” January 13, 2009. http://www.thelocal.se/20090113/16876 (accessed May 27, 2015).

Marsh, O. 2013. “A Funny Thing Happened on the Way to the Laboratory: Science and Standup Comedy.” http://blogs.lse.ac.uk/impactofsocialsciences/2013/07/12/a-funny-thing-happened-on-the-way-to-the-laboratory/ (accessed May 27, 2015).

Mian, R., G. Shelton-Rayner, B. Harkin, and P. Wiliams. 2003. “Observing a Fictitious Stressful Event: Haematological Changes, Including Circulating Leukocyte Activation.” Stress. 6 (1): 41–47.

Pinto, B., D. Marcal, and S.G. Vaz. 2013. “Communicating through Humor: A Project of Stand-up Comedy about Science. Public Understanding of Science.” Epub 12/9/2013.

Roth, W.M., S.M. Richie, P. Hudson, and V. Mergard. 2011. “A Study of Laughter in Science Sessions.” Journal of Research in Science Teaching 48 (5): 437–458.

Tal, A., S. Zuckerman, and B. Wansink. 2014. “Watch What You Eat: Action-Related Television Content Increases Food Intake.” JAMA Internal Medicine 174 (11): 1842–1843.

Traub, S.J., R.S. Hoffman, L.S. Nelson, 2001. “Pharyngeal Irritation after Eating Cooked Tarantula.”  International Journal of Medical Toxicology 4(5): 40.

Figure Legends

Figure 1: The author presenting a Weird Science workshop in late 2014. The caption on the image behind the author reads “Because Chocolate Can’t Get You Pregnant.”

Figure 2: Clay creations made by attendees in 2013, testing whether working with modeling clay can alleviate chocolate cravings.

Sustaining Place, Language, and Culture Together

Abstract

Our initiative involves a community engagement partnership guided by an understanding of decolonizing methodologies and an overarching goal to sustain the place, language, and culture of the Alaska Native village, Chevak. Furthermore, the Indigenous sovereignty and ownership of ancestral ways of knowing guided the design and implementation of this initiative. The Will of the Ancestors is an ongoing effort that involves a rural, community-based partnership of Elders, Indigenous inservice and preservice teachers, parents, and elementary students from a rural community located near the Arctic Circle and an education faculty from a major state university in Alaska. This synergistic approach includes the following components: teacher education, a collaborative Science, Technology, Engineering, Arts, and Mathematics (STEAM) curriculum project, the creation of a local atlas of plants and animals important to subsistence, and language revitalization through a children’s book project and writing workshop.

Introduction

The Native American Languages Act, Title I of Public Law 101-477 proclaims: “The status of the cultures and languages of Native Americans is unique and the United States has the responsibility to act together with Native Americans to ensure the survival of these unique cultures and languages.” Additionally, Congress made it the policy of the United States to “preserve, protect, and promote the rights and freedom of Native Americans to use, practice, and develop Native American languages.” Adding to the discourse, in April of 2014, the President of the National Alliance to Save Native Languages provided testimony to the U.S. House of Representatives on the need to support programs that help meet the linguistically unique educational needs of Native students while also preserving, revitalizing, and using these students’ native languages (Testimony of Ryan Wilson 2014).

While the charge is clear, so are the reasons behind it. In their work, Angelina Castagno and Brian Brayboy (2008) point out that the rhetoric that recognizes the shortfalls of the K–12 educational system offered to Indigenous students in this country dates back almost fifty years. At 13.2 percent, the dropout rate for Indigenous students is among the highest of any ethnic group in the United States (Aud et al. 2011). The statistics regarding the academic achievement of Native populations, particularly Alaska Native students enrolled in K–12 classrooms, indicate a persistent gap in achievement (also referred to as the “opportunity gap”). Often these system inadequacies are aggravated by the high teacher turnover rate. According to the University of Alaska Center for Educational Policy and Research, the teacher turnover rate in rural areas has been reported to average 20 percent, with some rural districts reporting a teacher attrition rate as high as 54 percent. One of the factors contributing to this rate is the teachers’ lack of knowledge about the local culture and traditions (Hill and Hirshberg, 2013). Additionally, the amount of material available to these students in their native languages is abysmal. This is important given that the number of books in the child’s home and the frequency with which the child reads for fun are also related to higher test scores, as reported by the National Assessment of Educational Progress (NAEP) (National Center for Educational Statistics 2013).

While there is no denying the discourse centered on the failures and inequities of the past, this project was initiated to provide a more thoughtful, action-driven, and synergistic approach. Our approach seeks to address the needs of K–20 students and their teachers, while preserving the Alaska Native cultures, languages, and subsistence ways of life. To do that, we have embarked on several projects, including the following components: a teacher education plan, a collaborative Science, Technology, Engineering, Arts, and Mathematics (STEAM) curriculum project, the creation of a local atlas of plants and animals important to subsistence, and language revitalization through a children’s book project and writing workshop.

Theoretical Understandings of Our Work

The community engagement projects have their foundation in the possibility and hope that through authentic engagement, students and faculty can establish meaningful relationships and a genuine appreciation of the importance of language, culture, and place with members of an Alaska Native community. Thus, this project was approached and implemented using two theoretical lenses: (1) Sociocultural Theory applied to science education (Tobin 2013) as a means of improving practice through research that benefits the participants; and (2) Demmert and Towner’s (2003) “culturally based education” (CBE), which emphasizes the following elements: recognition and use of Native languages; pedagogy using traditional cultural characteristics; teaching strategies and curriculum congruent with traditional culture and traditional ways of knowing; strong Native community participation in education; and knowledge and use of the political mores of the community.

Setting the Context: Life in the Arctic Circle

For thousands of years the Arctic tundra and the nearby Bering Sea and its tributaries have provided shelter and endowed the inhabitants of this remote village with an environment that has supported rich cultural traditions rooted in ecologically responsive knowledge and subsistence living in rural Alaska. Ancestral knowledge dating back thousands of years has been shared through oral traditions of storytelling, songs, and dances. Subsistence gathering and hunting are carried out using principles of harmonious coexistence in one of the harshest environments on Earth. The careful gathering of eggs and berries, ice fishing in the winter, spring seal hunting, and summer fish camps have ensured the survival of the Cup’ik people for thousands of years.

The bicultural, bilingual community of Chevak, Alaska is faced with language retention issues and with the challenges associated with incorporating Western technology while still maintaining a strong cultural identity, culture, and language. The Elders, teachers, and preservice teachers who work in the Immersion program are fluent and literate in their native language and possess anecdotal and practical knowledge of subsistence activities and ways of knowing in science. On the other hand, many of the parents of school-age children do not participate in subsistence activities and/or struggle with the Cup’ik language.

Multiple Approaches to Language and Culture Revitalization

Our involvement with this community engagement project began in 2010 when the superintendent of the Alaska Native community of Chevak approached the College of Education faculty about the revolving door of teachers in his district. Every year, teachers from outside Alaska came to teach at the school and very few lasted more than a couple of years. In extreme cases they did not return after the winter break, leaving children without a certified classroom teacher for months at a time. The request the superintendent made was for our college to provide a quality preservice education program for the Alaska Native paraprofessionals at the school. These individuals have deep roots in the community. Many even have relatives who graduated from the school or children who are enrolled in the K–12 school. This request began a collaboration between the faculty at our college and community members from the village. The Alaska Native paraprofessional initiative inspired faculty members to continue and deepen their collaboration with Elders, teachers, parents, and students. Five years later, these community-engaged projects are all intricately connected and mutually informing. The design and implementation of each initiative emerged from thoughtful conversations between community members and faculty. The initiatives include: (1) Alaska Native teacher preparation project; (2) Traditional ways of knowing in the STEAM curriculum; (3) Local atlas of plants and animals; (4) Children’s book project; (5) Writers group. Although we describe them below as separate projects, they are, in fact, a part of an integrated approach that has emerged through our collaboration. The graphic representation below shows how each project is linked within the partnership, followed by a more detailed description.

Download (PDF, 83KB)

The Alaska Native Teacher Preparation Program

The Alaska Native teacher preparation initiative seeks to prepare teachers who are fluent speakers of Cup’ik and who can serve the cultural, academic, and linguistic needs of students in the K–6 Language Immersion Wing, as well as in the English Language Wing. As the president of the local school board stated,

The members of the cohort will teach in the immersion program. We want to produce homegrown teachers with the help of the university. We support this program and would like to see it expand in the years to come. The presence of the faculty in our village is really appreciated. The cohort is taking the Western-style approach and the cultural roots of our people and merging them side by side, in the way Elder Boyscout envisioned it. This program will benefit our people, our kids. It is a model that other villages can follow. (Jeff Acharian, School Board President, April 12, 2013)

This model is a cohort model, enrolling currently uncertified Alaska Native paraprofessionals, who are already working in the classroom, in the elementary education program at the University of Alaska Anchorage. The cohort has ranged in number from twenty to seven, depending on the semester, starting in 2010. While the students take many of the classes via distance learning, which allows the students to continue to work at Chevak School, take care of their families, and practice subsistence, intensive courses have also been offered on site. These intensives are run over the course of one week and allow the cohort to experience an active learning environment while also cultivating relationships with a variety of university faculty, including those in the elementary education program, early childhood education program, and College of Arts and Sciences (for example science, philosophy, and anthropology faculty).

Although both faculty and cohort members generally prefer face-to-face classes, it is not economically feasible to fly instructors to the village for every class. In the beginning, more classes were offered on site, but as students have gained access to technology and the Internet, they have participated in more online courses. Intensive courses scheduled around subsistence are offered when possible (depending on faculty availability and funds).

During a session at the 2013 Alaska Native Studies Conference, a panel that featured members of the teacher preparation cohort, school board members, and university faculty shared their engagement with the project and its importance to the people in the community. The panel opened with the voice of cohort member Susie Friday-Tall, who shared the story of turning driftwood.

My mother shared the story of the driftwood with me; she heard it from my grandmother: The driftwood is alive and it deserves to be turned over. The pieces of driftwood talk. Each one says something different: I will be a harpoon, I will be a boat, I will be a walking stick. The driftwood will become something useful. We have to turn it, to make it useful. …My dream is to see our local people become teachers from kindergarten to 12. (Susie Friday-Tall, cohort member)

This story exemplifies the partnership that started five years ago, which seeks to provide a culturally sustaining teacher preparation program. The paraprofessionals who are part of the preservice teacher cohort have been working at the school for over a decade. One cohort member shared:

[With] the support I received from the teacher initiative I have been able to take college classes. This is a dream that I thought was so unattainable that it would die. Thanks to this initiative I will someday reach the goal to become a teacher for our Cup’ik children. (Cikigaq Joseph, cohort member, March 12, 2012)

Yet another young woman shared in a spirited voice what the program meant to her:

When we all reach our goals of becoming teachers it is going to be amazing. We know our students, we live among them; we eat the same food. I know that when we teach them they will soak up the information. Our children will excel. I am really thankful to this program. We are going to keep going and the students are going to fly; they are going to be good. (Julia Alberts, cohort member, April 12, 2013)

Finally, university faculty have also attested to the importance of this work and what they have received in return. As Assistant Professor of Early Childhood Education Kathryn Ohle stated,

Going to Chevak to teach Family Community Partnerships was life changing. It forced me to really think about the contexts in which we work while also recognizing and embracing the values of the community of Chevak and not those necessarily characteristic of the university community. We talk about culturally responsive    pedagogies but I did not fully understand what that looked like until I was there, interacting with these paraprofessionals who will change what education looks like for the next generation. I am a better teacher and a better citizen because of my experience there. (Kathryn Ohle, university faculty, August 10, 2014)


With four students already receiving their associate’s degrees and many others closely following suit, this is an initiative that has provided and will continue to provide support to the community by helping them “grow their own.”

STEAM Curriculum

The STEAM Curriculum project began in 2013 when a UAA faculty member, Dr. Irasema Ortega, began discussions with community members, in particular inservice teachers, about the science curriculum within the Immersion Wing. Dr. Ortega saw the possibilities of connecting the existing curricula to the preservice teacher initiative through collaborative efforts to create curricula via methodology and other courses. Before that, the science curriculum implemented in the K–4 immersion school was not available in the form of written lessons. At best, it was written in an abridged format. Previous efforts had involved a project in which twelve paraprofessionals worked alongside inservice teachers to produce picture books about the animals and plants found in the village and the surrounding tundra. (See Figure 2.) This project extended the effort by integrating the books as well as oral stories, plays, photography, and other forms of artistic expression into the immersion curriculum.

In our cooperative effort, our team shared a common goal: to design a curriculum map and lessons that address the revitalization of the language, culture, and traditional ways of knowing in science in an integrative fashion. (See Figure 2.) We also sought to address two needs: (1) the need to cooperate with the educators and community members in the village, and; (2) the framing of a curricular approach that addresses the preservation of their language, culture, and ways of knowing in science. Thus, we adopted the model of Culturally Sustaining Schooling (CSS). Given the wealth of Indigenous knowledge and its role in preserving the cultural and linguistic traditions, this approach validated Cup’ik traditional knowledge of nature and technology and allowed for three intertwined elements: culture and tradition, personal stories, and the stories uncovered in knowledge construction and use.

During the initial phase of the curriculum project, we worked with K–3 teachers at Chevak School and a cultural advisor to create integrated STEAM curriculum that was culturally responsive. The curriculum units were developed in Cup’ik and English and included both Western and Cup’ik perspectives. The stakeholders spent the first three days in the teachers’ lounge listening to stories about traditions and local knowledge. For example,

Making a kayak takes a lot of time and skill. When I was a young man, I started making my own kayak. First, I had to measure four arm lengths to figure out how long the kayak had to be. I had to build it according to my height and weight and it could only be off by ten pounds; otherwise, it would sink in the cold water. I would go out and collect pieces of birch wood. That took a long time. We do not build kayaks like this one anymore. The other day I set the traditional tools for kayak-making right here, by my kayak, next to the modern tools. Then I brought my father and asked him which set of tools he would choose to build a kayak. He looked at me and replied: I would use the Western tools; that way it would take less time and I can have more time for seal hunting and fishing tools (James Ayuluk, summer of 2012).

In this story, the narrator clearly illustrated the idea of the two rivers of knowledge and the desire to engage Alaska Native students in traditional knowledge using modern materials and technology. It was also clear that traditional knowledge included well-defined elements of science, technology, engineering, arts, and mathematics. These are some of the elements that helped define the curriculum project and illustrate why it is important that the local ways of knowing be documented and shared. The curriculum that is documented is subsequently integrated into coursework for the preservice teacher cohort as well as for science methods courses at UAA.

Below is the curriculum map that was generated during this project.

Local Atlas of Plants and Animals

The atlas project was another initiative that focused on the revitalization of language, culture, and place through Indigenous ways of knowing in science. An example of the synergy and connections this initiative has fostered started in 2013 and ended in 2014. During this project, an elementary preservice teacher and Irasema Ortega, who is a science education faculty member, collaborated with Alaska Native Elders, parents, teachers, and students to design and prepare an atlas of plants and animals based on traditional knowledge of subsistence practices, which the community members would then own and disseminate as they wished. During this project, members of the community provided valuable information and guidance used in the preparation of the atlas. Pictures were collected from a local photographer and cultural consultant and from the State of Alaska Fish and Wildlife website. It culminated in a tablet-based atlas for the community members to use as they wished.

This project also resulted in a meaningful experience for both the preservice teacher and UAA faculty member, as it reinforced the importance of learning from the community and understanding the characteristics of shared cognition of ancestral Indigenous knowledge of place, culture, and language. Thus, the atlas of plants and animals exemplified a mutually beneficial civic engagement project and also demonstrated an alternative approach to engagement with an Indigenous community. Further, it is representative of the connections the partnership has fostered toward the common goal of linguistic and cultural revitalization.

Language Revitalization Through Children’s Books

This is a project that reflects the wisdom of Elder Cecilia Pingayak-Andrews. When one of the UAA faculty visited with her during the Atlas project, she was asked: what would it take to retain the language and culture? Her answer was clear and definitive. ” Children learn our language on their mother’s lap. But how are we going to keep the language alive if the parents themselves do not speak it?” (Cecilia Andrews, informal interview, July 2014).

With that wisdom in mind, a project was initiated with Unite for Literacy, an organization working towards creating an abundance of books through a free, digital library with books that celebrate the languages and cultures of all children while also cultivating a lifelong love of reading. This project hinged on the amazing talents of the paraprofessionals from Chevak School (another indication of the ways in which the various facets of this collaboration work together), who helped translate the books into Cup’ik and narrated them. There are now thirteen books that can be heard in Cup’ik, and by the end of the project in 2015, an additional thirty-seven books will be added. Plans are also in the making to “localize” the books by using pictures from the Alaska context and then to print them as hardcopy books, which will be shared through interested Head Start organizations. This will not only make them available to families without access to the Internet but will also show the community that both their language and culture are recognized in print. Positive support from the On-site Coordinator of the Chevak Head Start has already been expressed, who commented,

We are very excited for our Head Start program to be considered to receive our Cup’ik culture’s tools such as the books you are offering. They are going to be used by our entire staff, Elder Mentors, and volunteers. And it is a bonus that the local Chevak School’s paraprofessionals are the ones who help create them. It will help our entire staff to work together to add 1 to 2 of these books per week into our lesson plans, so our students will hear and see our Cup’igtaq language. (e-mail correspondence, February 25, 2015)

While this project is still in process, the hope is that by providing materials in the native language, both early literacy and language preservation will occur “on the mother’s lap.”

Language Revitalization through Writers Workshop

The final project that is currently underway seeks to promote language revitalization while also documenting the preservation of language and ancestral knowledge of how to coexist in harmony with the environment. This will be done through a writers group, where manuscripts will be developed and featured as participant-authored chapters in a book for Emerald Publications (working title, Language Revitalization and Culturally Sustaining Pedagogies in Teacher Education Programs), which is due to the publisher in January 2016. This project was initiated as a result of a UAA faculty member’s experiences with the cohort as an instructor in a class in which participants shared stories from their lives. It is a project that connects the preservice teachers with their cultural identities through stories, while also providing experiences in methodologies that can be used in classroom teaching. In addition, research focusing on the viability of writers groups as tools for sustaining linguistic and cultural identity will be conducted.

The stories of the participants are powerful, because although contact is for the most part detrimental to their identity as Alaska Natives, they have persisted in their goals. Their stories are examples of self-determination and agency, and they inform our present and future work. They are collective, they can be healing, and they will become powerful publications in every genre.

Discussion

These projects, including a teacher education plan, a collaborative STEAM curriculum project, the creation of a local atlas of plants and animals important to subsistence, and a language revitalization initiative using a children’s book project and writing workshop, were initiated to address the needs of K–20 students and their teachers, while preserving the Alaska Native cultures, languages, and subsistence ways of life. As we continue to work collaboratively toward sustaining place, language, and culture, we find that the future of our partnership, and of future partnerships, resides in relationships, mutuality, and creativity. Together, we pursue projects that are transformative and sustaining. Such projects have no pre-existing frameworks. They are based on our strengths and on our relationships, and those will last a lifetime. The biggest threat to this and future partnerships is a lack of funding, but we remain hopeful (and we continue to seek funding).

While results of our ongoing efforts are forthcoming, our hope is that this synergistic approach might act as a framework for others working towards similar goals.

About the Authors

Flora Ayuluk is a teacher in the Cup’ik Immersion Wing at Chevak School in Chevak, Alaska. She is involved in many projects dedicated to language and culture revitalization, including the creation of a Science, Technology, Engineering, Arts, and Mathematics (STEAM)-based science curriculum that emphasizes the subsistence lifestyle critical to the community.

James Ayuluk is the cultural specialist at Chevak School in Chevak, Alaska. He is involved in many projects at the school and in the community, including the creation of a tablet-based atlas that documents the plants and animals important to the subsistence lifestyle critical to the community.

Susie Friday-Tall is a preservice teacher and the administrative assistant at the Chevak School. She is a member of the Cup’ik Dreams cohort. She hopes to see a school where all the teachers are from Chevak and can teach children Cup’ik language and culture.

Cathy Coulter is an associate professor at the University of Alaska Anchorage who has been working with the Chevak community since 2010. She is the Co-Principal Investigator of the Language, Equity, and Academic Performance (LEAP) Project initiative and teaches courses in the elementary education program related to second-language acquisition and literacy. Dr. Coulter also possesses significant expertise in narrative methodologies.

Agatha John-Shields is an Indigenous assistant professor at the University of Alaska Anchorage who has worked with the Chevak cohort since 2011 as the Immersion program consultant and expert for the Chevak Project. She has co-taught LEAP Project courses with Irasema Ortega. She teaches and supervises intern principals and teaches multicultural courses for the preservice teacher program and for new teachers coming to Lower Kuskokwim School District in Western Alaska. Agatha also possesses significant expertise in Indigenous immersion education, culturally responsive pedagogy, language revitalization and maintenance efforts, and educational leadership.

Mary T. Matchian is a teacher at the Chevak Language Immersion School. She is also a member of the Cupi’k STEAM-based science curriculum that emphasizes the subsistence lifestyle critical to the community.

Kathryn Ohle is an assistant professor at the University of Alaska Anchorage who has been working with the Chevak community since 2014. She teaches courses in the early childhood program related to literacy, math, and science teaching methods. Dr. Ohle also has interests in education policy and the early childhood teacher preparation.

Lillian Olson is a Cup’ik language teacher at the Chevak school. She is currently working on the creation of a Cup’ik dictionary. Lillian is involved in multiple language revitalization initiatives such as the Cup’ik classes for the parents of the Cup’ik immersion Head Start students.

Irasema Ortega is an assistant professor at the University of Alaska Anchorage who has been working with the Chevak community since 2013 as the Principal Investigator for the Chevak Project. She is the Co-Principal Investigator of the LEAP Project initiative and teaches courses in the elementary education program related to science education. Dr. Ortega also possesses significant expertise in place-based educational initiative and decolonizing methodologies.

Phillip Tulim is a kindergarten teacher in the Cup’ik Immersion Wing at Chevak School in Chevak, Alaska. He is involved in many projects dedicated to language and culture revitalization, including the creation of a STEAM-based science curriculum that emphasizes the subsistence lifestyle critical to the community.

Lisa Unin is a first grade teacher in the Cup’ik Immersion Wing at Chevak School in Chevak, Alaska. She is involved in many projects dedicated to language and culture revitalization, including the creation of a STEAM-based science curriculum that emphasizes the subsistence lifestyle critical to the community. Lisa is an artist who specializes in traditional parkas.

References

Aud, S., W. Hussar, G. Kena, K. Bianco, L. Frohlich, J. Kemp, and K. Tahan. 2011. The Condition of Education 2011. (NCES 2011-033). Washington, DC: U.S. Department of Education, National Center for Education Statistics.

Barac, R., and E. Bialystok. 2012. “Bilingual Effects on Cognitive and Linguistic Development: Role of Language, Cultural Background, and Education.” Child Development 83 (2): 413–422.

Castagno, A.E., and B.M.J. Brayboy. 2008. ” Culturally Responsive Schooling for Indigenous Youth: A Review of the Literature.” Review of Educational Research 78 (4): 941–993.

Demmert, W.G., Jr. and J.C. Towner. 2003. A Review of the Research Literature on the Influences of Culturally Based Education on the Academic Performance of Native American Students. Portland, OR: Northwest Regional Educational Laboratory. http://educationnorthwest.org/sites/default/files/cbe.pdf (accessed June 9, 2015).

Grande, S. 2008. “Red Pedagogy. The Un-methodology.” In Handbook of Critical and Indigenous Methodologies, N.K. Denzin, Y.S. Lincoln, L.T. Smith, eds., 233–254. Los Angeles: Sage.

Hill, A., and D. Hirshberg. 2013. Alaska Teacher Turnover, Supply, and Demand: 2013 Highlights. Anchorage: University of Alaska, Center for Alaska Education Policy Research.

National Center for Educational Statistics. 2013. National Assessment of Educational Progress (NAEP) 2013 Reading Assessment. Washington, DC: National Center for Educational Statistics, Institute of Education Sciences, U.S. Department of Education.

Native American Languages Act of 1992, Public Law 102–524. 1992. Washington, DC: U.S. Government Printing Office. http://www.gpo.gov/fdsys/pkg/STATUTE-106/pdf/STATUTE-106-Pg3434.pdf (accessed June 9, 2015).

Smith, L. 2012. Decolonizing Methodologies: Research and Indigenous People. 2nd ed. London: Zed Books.

Testimony of Ryan Wilson (Oglala Lakota), President National Alliance To Save Native Languages, before the U.S. House of Representatives Committee on Appropriations, Subcommittee on Interior, Environment, and Related Agencies. April 7, 2014. http://docs.house.gov/meetings/AP/AP06/20140407/101764/HHRG-113-AP06-Wstate-WilsonR-20140407.pdf (accessed June 9, 2015).

Tobin, K. 2013. “A Sociocultural Approach to Science Education.” Magis. Revista Internacional de Investigación en Educación 6 (12): 19–35.

Summer 2015: From the Guest Editor

 

I am honored to introduce the Summer 2015 issue of Science Education and Civic Engagement: An International Journal. This special issue will serve as a lasting tribute to Alan J. Friedman and his legacy of advancing science education, both in and out of the classroom. Alan’s work at and with different institutions, including the Lawrence Hall of Science, the New York Hall of Science (NYSCI), and the National Center for Science and Civic Engagement (NCSCE), often crossed disciplinary boundaries but always focused on the importance of making learning real and relevant.

In my opening remarks to the “Celebrating the Life and Work of Alan Friedman” memorial held at NYSCI on Saturday, June 14, 2014, I noted how I turned to Alan for his advice, guidance, wisdom, and expertise after I became President of that institution in 2008. He had retired from NYSCI in 2006, after a wonderful 22 years of service. In my mind, Alan was a larger-than-life legend. What I found when I met Alan was a humble man who exhibited a fundamental humanity in his approach to life and work. He did not realize how much his presence, his passion, and his vision for engaging the public in science would continue to influence what we do day in and day out at NYSCI and throughout the field.

The issue begins with personal memories from Alan’s colleagues and is followed by scholarly pieces on a range of informal science education projects and activities, involving engagement by students of all ages in issues of civic importance. Alan was the inspiration and founding director for SENCER-ISE (Science Education for New Civic Engagements and Responsibilities-Informal Science Education), an initiative of NCSCE to encourage learning across the sectors. This issue features three contributions by SENCER-ISE partners.

In the first section, Ellen Mappen, Sheila Grinell, Eric Siegel, Alan Gould, Wm. David Burns, and Priya Mohabir all speak to the multifaceted contributions Alan made to science education and to other fields. David Ucko bridges the gap between this section and the next by looking at how basic tenets of the SENCER framework align with those of informal science education. This section ends with a reprint of “In Memoriam,” which David Burns wrote on May 5, 2014 to share the sad news of Alan’s death with the SENCER community.

Two point of view articles open the next section. Martin H. Smith, Steven M. Worker, Andrea P. Ambrose, and Lynn Schmitt-McQuitty address the benefits that out-of-school science programming can have on the academic achievement of K–12 students. Michelle Kortenaar, Allison Sribarra, and Tamar Kushnir discuss a SENCER-ISE project that engages undergraduate students in developing tools for parents and other caregivers to encourage children’s scientific exploration.

The issue also features seven project reports, which show the diversity of work in informal science education and the many connections with institutions of higher education. Jennifer A. da Rosa, Sarah S. Durkin, Rachel Hetlyn, Mark Murray, and Angela Leimkuhler Moran focus on United States Naval Academy undergraduates who facilitate informal STEM education outreach events for K–12 students and teachers and on the impact of this civic engagement on the Naval Academy students. Jill Denner, Jacob Martinez, Heather Thiry, and Julie Adams describe an afterschool program that engages Latino elementary school students in computer science concepts. Amy R. Pearce, Karen L. Yanowitz, and Anne Grippo discuss how their local and campus communities launched a science festival in a rural area. Flora Ayuluk, James Ayuluk, Susie Friday-Tall, Mary Matchian, Phillip Tulim, Lillian Olson, Lisa Unin, Agatha John Shields, Cathy Coulter, Kathryn Ohle, and Irasema Ortega write about their community engagement partnership that has an overarching goal of sustaining the place, language, and culture of an Alaskan Native village. Robert E. Pyatt introduces the concepts behind his informal science outreach workshops called “Weird Science,” and discusses some of the challenges he has encountered in his work. Kathryn Stofer explores the existence of agriculture-related content in science centers and the potential support around research efforts for global sustainable agricultural production that also could encourage public involvement and action on the issue. Nellie Tsipoura and Jay Farrell Kelly describe their SENCER-ISE project, in which community college students and citizen scientists work together in a forest conservation effort.

Finally, two research papers provide the results of connections between informal science education and higher education institutions. Linda Fuselier writes about an intergenerational program focusing on the restoration of forest health ecosystems that involves a general education environmental science course, an outdoor education center, and elder participants in a SENCER-ISE project. Jenifer Perazzo, Carl Pennypacker, David Stronck, Kristin Bass, Jesus Heredia, Rainbow Lobo, and Gabriel Ben-Shalom provide results from Afterschool Science and Math Integration (ASAMI), a project that integrates middle school common core mathematics concepts and the Next Generation Science Standards to engage English Language Learners.

I join David Burns in thanking all the contributors to this issue; the articles they have written show the diversity of the field that we know as informal science education and the value of working across sectors to enhance learning, not just by students and the public who visit science centers or view science media but also by educators. This was Alan’s goal and his legacy.

– Margaret Honey, Ph.D

President and CEO, New York Hall of Science

Guest Editor

Access individual tributes here:
Access individual articles here:

 

Download the full issue:

 

Download (PDF, 3.75MB)

 

SENCER Synergies with Informal Learning

Abstract

SENCER offers a model for integrating aspects of formal and informal learning. This article explores their intersection in the SENCER context, emphasizing the common learner focus and role of relevance in stimulating interest. The SENCER-ISE project further strengthens connections through Higher Education-Informal Science Education partnerships that can bring complementary expertise as well as greater access to the community through public settings and audiences. Applying the lessons learned from the planned evaluation studies will be critical to identifying effective practices and achieving impact at increased scale.

Introduction

This article explores connections between SENCER and informal science education (ISE), expanding on a talk that Alan Friedman invited me to present at the Fourth Annual Science Symposium co-sponsored by SENCER, the National Center for Science & Civic Engagement, and Franklin & Marshall College’s Center for Liberal Arts and Society (Ucko 2009). At that time, I served as deputy director of NSF’s Division of Research on Learning in Formal and Informal Settings and had known Friedman for many years, since we both had spent most of our careers in the science center field. I had been impressed by similarities between the SENCER approach to aspects of informal learning (and was the “fellow at the National Science Foundation” [Burns 2011a, 2] who helped make a connection). Friedman was instrumental in organizing the subsequent SENCER-ISE invitational conference, which in March of 2011 brought together representatives from both communities to discuss potential synergies. Funding was provided by NSF, and Friedman helped to obtain a Noyce Foundation grant for the conference and then for an initial 10 Higher Education-ISE partnerships. I currently serve as an external advisor, along with Marsha Semmel, on the SENCER-ISE project built upon his legacy.

Informal learning can be defined in a variety of ways (Ucko and Ellenbogen 2008, 241). In general, it is “free-choice,” self-directed, and socially mediated. Table 1 lists various attributes of informal learning in contrast with those of formal learning, to identify key differences. Although context dependent and realized to varying degrees, the extremes are represented here in order to accentuate distinctions. This caveat applies both to the “informal” and to the “formal” descriptors, particularly as they relate (or not) to varying modes of higher education.

TABLE 1. Contrasting Attributes of Formal and Informal Learning

Formal Learning Informal Learning
Compulsory; required Voluntary; “free choice”
Content focus Learner focus
School-based Ubiquitous; museums, media, etc.
Children & youth All ages, lifelong
Set times Any time
Extended time periods Episodic; often brief
Large peer group setting Individual, family, or small group
Regular assessment No tests or grades
Teacher-directed Self-directed
Cognitive emphasis Affective emphasis
Extrinsic motivation Intrinsic motivation
Transmission model Contructivist; personal meaning-making
Lecture-based Experimental; hands-on; interactive
Favored learning style Flexible learning styles
Serious Enjoyable; engaging; fun
Goal-focused Exploratory; open-ended
Curriculum-based; “push” Interest-driven; “pull”
Constrained by curriculum Unlimited; open-ended; flexible
Predetermined content or focus Any content or focus
Disciplinary content Interdisciplinary; transdisciplinary
May appear irrelevant Personally relevant

 

Connections with Informal Learning

In reviewing outcomes of the SENCER-ISE conference, Friedman and Mappen note that the emphasis on civic engagement provided the “glue” that brought the two communities together (2011, 33). That focus takes advantage of certain strengths of informal learning, several of which they identified, based on an abridged table from the 2009 presentation and the “strands” of the Learning Science in Informal Environments report (NRC 2009). The discussion that follows extends that analysis through comparison with key features of SENCER. (It cannot capture all points of intersection with informal learning, however, since it is likely that the diversity of SENCER courses and settings create additional connections beyond those identified here.)

Interest’ is a driving force in the SENCER ideals” (Burns 2011b, 9).

Because informal learning is generally voluntary and self-directed, it is motivated by personal interest. The SENCER approach offers a similar means to stimulate student interest and engagement by making connections to “matters that are real, relevant and of vital interest to citizens in a democracy” (Burns 2012, 7). A number of the SENCER-ISE partnerships, for example, involve students in citizen-science activities in which they gather and analyze data related to local, national, or international issues.

They [SENCER courses] are essentially interdisciplinary, so they are more like the world itself than a typical undergraduate curriculum” (Burns 2011b, 8; see www.sencer.net/Resources/models.cfm).

In general, informal learning experiences are similarly interdisciplinary, since they tend to emphasize real applications and issues rather than particular disciplinary content. Even “Exploratorium-type” science exhibits may involve multiple disciplines, because they are phenomenon based. (For example, the Heat Camera, which reveals the infrared radiation emitted by a visitor’s body, demonstrates aspects of both physics and biology.) Like SENCER activities, they are typically “authentic experiences” (Burns 2011b, 8).

SENCER courses and projects that have been designed with students helping all the way just tend to be better. They are more likely to capture something that truly matters to and interests students…. Students can make vital and valuable intellectual contributions to course content and design, development, and refinement” (Burns 2012, 9).

This aspect of SENCER emphasizes its focus on the learner and the value of involving the target audience in the planning and implementation of the educational activities. That same focus is central to developing informal learning experiences that successfully engage their target audiences and achieve the intended impacts.

It helps to tie assessment to pedagogy (including reflection on course activities like service learning, research, etc); assess frequently and at intervals short enough to enable you to make ‘repairs’ and mid-course corrections…” (Burns 2012, 10).

Although informal learning is not assessed as in formal education, evaluation plays a related role. Front-end evaluation seeks to determine audience background and interests to guide the planning of the informal learning experiences. Formative evaluation, through such activities as testing prototypes or a pilot program, obtains feedback at early stages of development when changes are relatively easy to make. Summative evaluation seeks to determine the outcomes and learner impacts of the experiences, whether intended or not. The results can help to improve future development and to address institutional or funder needs. Remedial evaluation is sometimes carried out after completion to make improvements in ongoing programs or exhibits.

SENCER-ISE

SENCER offers a model for synergistically integrating aspects of formal and informal learning to take advantage of the strengths that each offers. The formal course component, for example, brings greater depth than may be possible in informal settings, along with more extended periods of time for the learning activities. In the SENCER-ISE project, formal-informal connections are further enhanced through the active participation of ISE-related organizations that partner with faculty members at a college or university (Table 2).

TABLE 2. SENCER-ISE Partner Organizations

Higher Education Partner ISE Partner
Antioch College Glen Helen Outdoor Education Center
Brooklyn College – CUNY Gateway National Recreation Area
Cornell University Sciencenter
Fordham University Wildlife Conservation Society
Hamilton, Hope, and Oberlin Colleges Green Science Policy Institute
New Mexico EPSCoR New Mexico Museum of Natural History & Science
Paul Smith’s College The Wild Center
Raritan Valley Community College New Jersey Audubon Society
St. Mary’s College of California Lindsay Wildlife Museum
University of Connecticut Connecticut Science Center

In addition to bringing expertise in communicating with the public, partners can also provide a setting and access to an audience and larger community.

Typical higher-education-based ISE relationships focus on communicating aspects of current research to the public through museum programs or exhibits, citizen science, science festivals, science cafés, and other informal learning experiences. Examples range from outreach efforts by individual scientists to national initiatives such as the Nanoscale Informal Science Education Network. Because most of the SENCER-ISE partnerships add a course component, they also create the opportunity to transform undergraduate instruction by strengthening the learner focus through the means previously described. Movement between the different settings and cultures of the formal and informal partners may further enhance student learning through the process of boundary crossing (Akkerman and Bakker 2011). For example, carrying out research that traverses both Cornell’s Early Childhood Cognition Lab and the real-world Sciencenter can provide students with a perspective not possible within either domain alone.

In addition, these partnerships offer valuable professional development to the participating faculty and ISE participants, as well as introducing new college student and public audiences to ISE institutions (Friedman and Mappen 2012, 137–139). Perhaps most importantly, they can impact the community in meaningful ways through the activities carried out by students. For example, the Antioch College/Glen Helen project will help reforest a public nature preserve, while the Paul Smith’s College/Wild Center will address regional climate change issues by targeting gatekeepers.

Each partnership will carry out its own evaluation to assess the process and outcomes. In addition, a summative evaluation conducted for the project overall will focus on lessons learned from the collaboration between formal and informal partners. Longer-term success will be determined in part by the extent of institutionalization of programs and relationships that lead to sustainability. Findings from these and other studies will be critical to identifying effective practices and steps necessary to increase the scale of this initial undertaking and to amplify its benefits. Addressing SENCER, Wm. David Burns has suggested that “creating and sustaining a community of practice is entirely within our capacity and is necessary to achieving larger scale reforms” (2012, 8). Such a community would benefit greatly from including informal-learning practitioners and researchers among its members. Alan Friedman would have been the first to participate.

About the Author

In addition to consulting at Museums + more; David Ucko co-chairs a National Research Council study on communicating chemistry in informal settings and serves on the Visitor Studies Association board. Previously, he was deputy director for the Division of Research on Learning in Formal and Informal Settings and head of Informal Science Education at NSF, founding president of Kansas City’s Science City at Union Station, deputy director of the California Museum of Science & Industry, vice president of Chicago’s Museum of Science and Industry, and a chemistry professor at Antioch College and City University of New York. He received his Ph.D. in chemistry from M.I.T. and his B.A. from Columbia College.

References

Akkerman, S.F., and A. Bakker. 2011. “Boundary Crossing and Boundary Objects.” Review of Educational Research 81 (2): 132–69.

Burns, W.D. 2011a. “The SENCER Context.” In Proceedings of Science Education for New Civic Engagements and Responsibilities-Informal Science Education Conference. Jersey City, NJ: Liberty Science Center, March 6–8, 1–3. http://www.ncsce.net/initiatives/documents/sisefinal.pdf (accessed April 13, 2015).

———. 2011b. “‘But You Needed Me’: Reflections on the Premises, Purposes, Lessons Learned, and Ethos of SENCER, Part 1.” Science Education & Civic Engagement 3 (2): 5–12.

———. 2012. “‘But You Needed Me’: Reflections on the Premises, Purposes, Lessons Learned, and Ethos of SENCER, Part 2.” Science Education & Civic Engagement 4 (1): 6–13.

Friedman, A.J., and E. Mappen. 2011. “SENCER-ISE: Establishing Connections Between Formal and Informal Science Educators to Advance STEM Learning through Civic Engagement.” Science Education & Civic Engagement 3 (2): 31–37.

———. 2012. “Formal/Informal Science Learning through Civic Engagement: Both Sides of the Education Equation.” In Science Education and Civic Engagement: The Next Level, 1121:133–43. ACS Symposium Series 1121. Washington, DC: American Chemical Society.

National Research Council (U.S.). 2009. Learning Science in Informal Environments: People, Places, and Pursuits. Committee on Learning Science in Informal Environments. P. Bell, B. Lewenstein, A.W. Shouse, and M. Feder, eds. Board on Science Education, Center for Education, Division of Behavioral and Social Sciences and Education. Washington, D.C.: National Academies Press.

Ucko, D.A. 2009. “Informal Learning & Synergies with Formal Education: NSF Perspective.” Presented at the Fourth Annual Science Symposium, Preparing Undergraduates of Tomorrow: How Informal Science Education Experiences Can Improve College Readiness, Franklin & Marshall College, Center for Liberal Arts and Society, Lancaster, PA, October 17. https://itunes.apple.com/us/podcast/an-nsf-perspective-video/id480218717?i=105513834&mt=2 (accessed April 13, 2015).

Ucko, D.A., and K.M. Ellenbogen. 2008. “Impact of Technology on Informal Science Learning.” In The Impact of the Laboratory and Technology on Learning and Teaching Science K-16, D.W. Sunal, E.L. Wright, and C. Sundberg, eds. Research in Science Education. Charlotte, NC: Information Age Publishing, 239–266.

 

Including Civic Engagement as a Component of Scientific Literacy

Martin H. Smith,
UC Davis
Steven M. Worker,
UC Davis
Andrea P. Ambrose,
UC Agriculture and Natural Resources Development Services
Lynn Schmitt-McQuitty,
UC Cooperative Extension

Youth Scientific Literacy and Nonformal Education Programs

Science is a driving force of twenty-first-century society. As a consequence, related public policy issues (e.g., stem cell research, global warming, food safety and security, water quality and distribution) require informed choices made by a population that is scientifically literate (Committee on Prospering in the Global Economy 2007; Hobson 2008). However, scientific literacy among the adult population in the United States is considered low (Miller 2006), and data from standardized assessments of K–12 youth in recent years have shown poor achievement in science at all three grade levels tested—fourth, eighth, and twelfth (e.g., Fleischman et al. 2010; Gonzales et al. 2008; National Center for Education Statistics 2011).

While improvements in school-based science education represent one way to address the low levels of academic achievement in science among K–12 youth (Smith and Trexler 2006), a growing body of literature suggests that nonformal science programs can help attend to the issue, in part because they emphasize three cross-cutting characteristics of learning: people-, place-, and culture-centeredness (Bell et al. 2009; Fenichel and Schweingruber 2010; Kisiel 2006; Kress et al. 2008; National Research Council [NRC] 2009). Specifically, research findings have shown that out-of-school time (OST) science programming can increase youths’ science content knowledge and process skills; additionally, such programs can have positive effects on youths’ confidence and interest in science (National Research Council 2009; Stake and Mares 2005).

The 4-H Youth Development Program and Youth Scientific Literacy

The 4-H Youth Development Program is a national nonformal education organization for individuals aged 5–19. Programmatically, 4-H focuses on advancing positive youth development through hands-on educational opportunities that include civic engagement. Complementing its century-long history of offering science projects and programs ranging from geology and minerals to soil conservation, forestry to wildlife and fisheries, and computer science to animal and veterinary science (United States Department of Agriculture 2003), National 4-H established the 4-H Science Mission Mandate in an effort to expand and strengthen 4-H science education efforts through state-based 4-H programs (Schmiesing 2008). The California 4-H Program responded to the National 4-H Science Mission Mandate by commencing a statewide 4-H Science, Engineering, and Technology (SET) Initiative (University of California Agriculture and Natural Resources 2008). This effort focuses on science programming, educator professional development, and evaluation in California 4-H SET, with an emphasis on scientific literacy as it relates to key statewide needs in the areas of natural resources, agriculture, and nutrition (Regents of the University of California 2009).

Defining Scientific Literacy to Advance 4-H Science Programming

To develop a framework, researchers and program staff began by asking the question: What does it mean to be scientifically literate within the context of California 4-H? However, despite a plethora of existing definitions of scientific literacy (Roberts 2007), there was no consensus about the meaning that allowed us to answer this question. This is a critical first step: a definition for the construct of scientific literacy is necessary to develop and advance science programming (Roberts 2007). Thus, our efforts to advance science programming in California 4-H began by framing a definition of scientific literacy (Smith et al. 2015).

A review of the literature revealed that most existing definitions of scientific literacy are not contextualized; rather, they focus on a broad array of science concepts and processes considered important to scientists (Falk et al. 2007; Laugksch 2000; Roberts 2007) but ignore “the social aspects of science and the needs of citizenship” (Lang et al. 2006, 179). In contrast, when viewing science learning as being contextualized, referred to as a “focus-on-situations” approach, programming places an emphasis on authentic science-related issues that individuals may encounter (Roberts 2007). Because of the contextualized nature of 4-H, we concentrated on developing a definition of scientific literacy that would accommodate relevant science programming across multiple contexts and include civic engagement, a hallmark of the 4-H experience (Brennan et al. 2007; Hairston 2004). By considering the construct of scientific literacy from this perspective, the definition developed for the California 4-H Program includes four anchor points: science content, scientific reasoning skills, interest and attitude, and contribution through applied participation. The four anchor points are described further as follows:

  • Anchor Point I: Science Content. Content knowledge is an important component of any definition of scientific literacy (NRC 2007; NRC 2009; Roberts 2007). A “focus-on-situations” approach places the emphasis on science-related content relevant to the citizens of California (e.g., water resource management, sustainable food systems, sustainable natural ecosystems, food safety and security, management of endemic and invasive pests and diseases, energy security and green technologies, and nutrition education and childhood obesity) that have been identified as germane to the state’s citizens (Regents of the University of California 2009).
  • Anchor Point II: Scientific Reasoning Skills. The advancement of scientific reasoning skills encourages learners to become more proficient in the practices of science by asking questions, developing and using models, planning and carrying out investigations, analyzing and interpreting data, constructing explanations, engaging in argumentation from evidence, and obtaining, evaluating, and communicating information (NRC, 2012). Referred to by Colvill and Pattie as the “‘building blocks’ of scientific literacy” (2002, 20), scientific reasoning skills provide learners with the necessary abilities to participate in scientific investigations, challenge conclusions, and question understanding.
  • Anchor Point III: Interest and Attitudes. Enhancing interest in and attitudes toward science can influence individuals in a variety of ways: it can stimulate their interest in science careers, help guide their responses to science-related situations in their everyday lives, and enhance their motivation to become involved in science-related issues in meaningful ways as citizens (Bybee and McCrae 2011). This is especially germane to audiences that have had limited educational opportunities in science, including women and ethnic minorities (Else-Quest et al. 2013; Scott and Martin 2012).
  • Anchor Point IV: Contribution through Applied Participation. The application of knowledge and skills in authentic contexts helps individuals gain a deeper understanding of scientific concepts and develop their abilities to think critically (Jones 2012). Furthermore, Anchor Point IV is particularly relevant to 4-H youth and the development of citizenship and life skills through civic engagement opportunities. Specifically, youth apply new knowledge and skills in ways that help address authentic community needs they have identified as important (e.g., Smith 2010).

Conclusion

Twenty-first-century society requires a scientifically literate citizenry (Hobson 2008; Committee on Prospering in the Global Economy 2007). Scientific literacy among youth populations is low (e.g., National Center for Education Statistics 2011), and nonformal science programs can help attend to this issue (e.g., Fenichel and Schweingruber 2010). However, to accomplish this, a definition of scientific literacy is needed (Roberts 2007). In California 4-H, we developed a definition of scientific literacy that includes the engagement of youth in science-related issues at the community level. Involving youth in service opportunities results in contributions to the community and advances the youths’ development (Brennan et al. 2007). Furthermore, by engaging youth fully in community-based change efforts they learn to function effectively in society (Nitzberg 2005).

Organizationally, California 4-H science programming is grounded in constructivist-based pedagogical strategies. Specifically, learning opportunities utilize guided inquiry-based instruction embedded in a five-step experiential learning cycle that places an emphasis on the authentic application of new knowledge and skills—the point where civic engagement intersects with 4-H science programming. To date, however, California 4-H has lacked a coherent framework to guide the key elements of science programming—the development of new curricula, the adaptation of existing curricula, educator professional development, and assessment efforts—in a manner that, by design, includes civic engagement.

The definition of scientific literacy that was developed will provide a programmatic structure for all elements of science programming in California 4-H; it will also afford a consistent, systematic strategy that will allow for the comparison of 4-H science programs within and across contexts (e.g., 4-H clubs, camps, afterschool programs), the evaluation of pedagogies, and assessments of targeted learner outcomes (Roberts 2007). Furthermore, the definition of scientific literacy in California 4-H intentionally includes the social aspects of science by engaging youth directly in relevant community issues. Such civic engagement is a key component of 4-H programming; in a larger context, however, it is essential to helping develop an informed public that is faced ever more frequently with decisions on science-related public policy issues.

About the Authors

Andrea Ambrose, who serves as the acting director of the University of California Agriculture and Natural Resources Development Services, has thirty years of professional experience in the out-of-school education field including more than twenty years as an art and science museum educator, program developer, and fundraiser for organizations in Colorado, California, and West Virginia. She has taught standards-based science and art workshops for K–12 students, conducted professional development programs for K–12 educators, worked with and managed youth and adult volunteers, and secured significant funding from corporations, foundations, and public agencies for programmatic and capital projects. Her efforts to elevate the quality of out-of-school time programs for young people continue as she works to facilitate strong programmatic and funding partnerships on behalf of the University of California 4-H program and the UC Division of Agriculture and Natural Resources. She holds a B.A. in Studio Art and Art Education from Colorado State University and an M.A. in Art History from the University of Oregon.

Lynn Schmitt-McQuitty works as a county-based faculty member for the University of California Cooperative Extension and serves the geographic region of Santa Cruz, Monterey, and San Benito Counties with youth development programming in nonformal science. 

Her scope of work is focused on developing multidisciplinary and integrated approaches to addressing California’s and the nation’s decline in youth science performance and achievement. This is accomplished by conducting applied research, education and programs with nonformal educators utilizing effective professional development models, curricula, and deliveries, to engage youth in self-directed learning and discovery.

Schmitt-McQuitty graduated from the University of Wisconsin at Stevens Point in 1987 with a B.S. degree in Elementary Education with an emphasis in Outdoor Education, and obtained her M.S. degree in Outdoor Education in 1991 from Northern Illinois University.

The overarching goal of Martin H. Smith‘s work is to develop, evaluate, and publish effective, research-based science curricula and educator professional development models for school-based and nonformal education programs. Specifically, he focuses on educational materials and strategies that emphasize constructivism, reflective practice, and situated learning. His current work focuses on applied research related to youth scientific literacy in the areas of bio-security and water science education. He is also engaged in efforts to develop a theoretical basis for science education programming within California’s 4-H Youth Development Program, with an emphasis on defining scientific literacy, defining curriculum, and implementation fidelity. In his tenure at UC-Davis he has supervised twenty graduate fellows from science disciplines in education outreach work through the School of Education, has served on committees for graduate students (M.S. and Ph.D.), and has mentored over 450 undergraduate students involved in a wide variety of research, development, and extension efforts.

Steven Worker coordinates the California 4-H Science, Engineering, and Technology (SET) Initiative, an effort to strengthen youth science education in the 4-H Youth Development Program. Worker is a Ph.D. candidate at the UC Davis School of Education and is engaged in a qualitative case study of the co-construction of design-based learning environments by youth and adult volunteers in out-of-school time.

References

Bell, P., B. Lewenstein, A. Shouse, and M. Feder. 2009. Learning Science in Informal Environments: People, Places, and Pursuits. Washington, DC: National Academies Press.

Brennan, M. A., R.V. Barnett, and E. Baugh. 2007. “Youth Involvement in Community Development: Implications and Possibilities for Extension.” Journal of Extension 45 (4).

Bybee, R., and B. McCrae. 2011. “Scientific Literacy and Student Attitudes: Perspectives from PISA 2006 Science.” International Journal of Science Education 33 (1): 7–26.

Committee on Prospering in the Global Economy of the 21st Century (U.S.), and Committee on Science, Engineering, and Public Policy (U.S.). 2007. Rising above the Gathering Storm: Energizing and Employing America for a Brighter Economic Future. Washington, DC: National Academies Press.

Covill, M., and I. Pattie. 2002. Science Skills: The Building Blocks for Scientific Literacy.” Investigating: Australian Primary and Junior Science Journal 18 (3): 20–22.

Else-Quest, N. M., C.C. Mineo, and A.H. Higgins. 2013. “Math and Science Attitudes and Achievement at the Intersection of Gender and Ethnicity.” Psychology of Women Quarterly 37 (3): 293–309.

Falk, J.H., M. Storksdieck, and L.D. Dierking. 2007. “Investigating Public Science Interest and Understanding: Evidence for the Importance of Free-choice Learning.” Public Understanding of Science, 16: 455–469.

Fenichel, M., and H.A. Schweingruber. 2010. Surrounded by Science: Learning Science in Informal Environments. Washington, DC: National Academies Press.

Fleischman, H.L., P.J. Hopstock, M.P. Pelczar, and B.E. Shelley. 2010. Highlights from PISA 2009: Performance of U.S. 15-Year-Old Students in Reading, Mathematics, and Science Literacy in an International Context (NCES 2011-004). Washington, DC: National Center for Education Statistics, Institute of Education Sciences, U.S. Dept. of Education.

Gonzales, P., T. Williams, L. Jocelyn, S. Roey, D. Kastberg, and S. Brenwald. 2008. Highlights from TIMSS 2007: Mathematics and Science Achievement of U.S. Fourth- and Eighth-Grade Students in an International Context (NCES 2009–001 Revised). Washington, DC: National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education.

Hairston, J.E. 2004. “Identifying What 4-H’ers Learn from Community Service Learning Projects.” Journal of Extension 42 (1).

Hobson, A. 2008. “The Surprising Effectiveness of College Scientific Literacy Course.” The Physics Teacher 46, 404-406.

Hurd, P.D. 1998. “Scientific Literacy: New Minds for a Changing World.” Science Education 82: 407–416.

Hussar, K., S. Schwartz, E. Boiselle, and G.G. Noam. 2008. Toward a Systematic Evidence Base for Science in Out-of-School Time: The Role of Assessment. Program in Education, Afterschool and Resiliency (PEAR), Harvard University and McLean Hospital.

Jones, R.A. 2012. “What Were They Thinking? Instructional Strategies That Encourage Critical Thinking.” The Science Teacher 79 (3): 66–70.

Kisiel, J. 2006. “Urban Teens Exploring Museums: Science Experiences beyond the Classroom.” American Biology Teacher 68 (7): 396, 398–399, 401.

Kress, C. A., K. McClanahan, and J. Zaniewski. 2008. Revisiting How the U.S. Engages Young Minds in Science, Engineering and Technology: A Response to the Recommendations Contained in The National Academies’ “Rising above the Gathering Storm” Report. Chevy Chase, MD: National 4-H Council.

Lang, M., S. Drake, and J. Olson. 2006. “Discourse and the New Didactics of Scientific Literacy.” Journal of Curriculum Studies 38 (2): 177–188.

Laugksch, R.C. 2000. “Scientific Literacy: A Conceptual Overview.” Science Education 84 (1): 71–94.

Millar, R. 2008. “Taking Scientific Literacy Seriously as a Curriculum Aim.” Asia-Pacific Forum on Science Learning and Teaching 9 (2): 1–18.

Miller, J. 2006. “Civic Scientific Literacy in Europe and the United States.” Paper presented at the annual conference of the World Association for Public Opinion Research, Montreal, May.

National Center For Education Statistics. 2011. The Nation’s Report Card: Science 2009 (NCES 2011-451). Washington, DC: Institute of Education Sciences, U.S. Department of Education. http://nces.ed.gov/nationsreportcard/pdf/main2009/2011451.pdf (accessed June 12, 2015).

National Research Council (NRC). 2007. Taking Science to School: Learning and Teaching Science in Grades K-8. Washington, DC: National Academies Press.

National Research Council (NRC). 2009. Learning Science in Informal Environments: People, Places, and Pursuits. Washington DC: National Academies Press.

National Research Council (NRC). 2012. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Washington, DC: National Academies Press.

Nitzberg, J. 2005. “The Meshing of Youth Development and Community Building. Putting Youth at the Center of Community Building.” New Directions for Youth Development 106: 7–16.

Regents of the University of California 2009. University of California, Division of Agriculture and Natural Resources Strategic Vision 2025. Oakland, CA: University of California. http://ucanr.org/files/906.pdf (accessed June 12, 2015).

Roberts, D.A. 2007. “Scientific Literacy/Science Literacy.” In Handbook of Research on Science Education S.K. Abell and N.G. Lederman, eds., 729–780.

Schmiesing, R.J. 2008. 4-H SET Mission Mandate. Washington, DC: United States Department of Food and Agriculture.

Scott, A.L., and A. Martin. 2012. Dissecting the Data 2012: Examining STEM Opportunities and Outcomes for Underrepresented Students in California. Report from Level Playing Field Institute, San Francisco, CA. http://www.cslnet.org/wp-content/uploads/2013/07/LPFI-Dissecting-the-Data-2012.pdf (accessed June 12, 2015).

Smith, M.H. 2010. There’s No New Water! Chevy Chase, MD: National 4-H Council.

Smith,M.H., and L. Schmitt-McQuitty. 2013. “More Effective Professional Development Can Help 4-H Volunteers Address Need for Youth Scientific Literacy.” California Agriculture 67 (1): 47–53.

Smith, M.H., and C.J. Trexler. 2006.”A University-School Partnership Model: Providing Stakeholders with Benefits to Enhance Science Literacy.” Action in Teacher Education 27 (4): 23–34.

Smith, M.H., S.M. Worker, A.P. Ambrose, and L. Schmitt-McQuitty. 2015. “‘Anchor Points’ to Define Youth Scientific Literacy within the Context of California 4-H.” California Agriculture 69 (2): 77–82.

Stake, J.E., and K.R. Mares.2005. “Evaluating the Impact of Science-enrichment Programs on Adolescents’ Science Motivation and Confidence: The Splashdown Effect.” Journal of Research in Science Teaching 42 (4): 359–375.

United States Department of Agriculture. 2003. Annual 4-H Youth Development Enrollment Report. 2003 Fiscal Year. Washington, DC: Cooperative State Research, Education, and Extension Service.

University of California Agriculture and Natural Resources. 2008. “4-H Launches SET.” ANR Report 22 (3): 3. http://ucanr.org/sites/anrstaff/anrreport/archive/reportarchive/report08/rptpdf08/september-2008.pdf (accessed June 12, 2015).

Zeidler, D.L., and B.H. Nichols. 2009. “Socioscientific Issues: Theory and Practice.” Journal of Elementary Science Education 22 (2): 49–58.

 

In Memoriam: Alan J. Friedman

Wm. David Burns,
National Center for Science and Civic Engagement

The Alan Friedman who telephoned to ask to be excused from working on the SENCER-ISE project for a while so that he could focus on his medical condition was the same Alan Friedman who called on numerous other occasions to say he had a glimmer of an idea or a fully imagined project in mind that would help move the work we are doing from being “nice to necessary.”

Two weeks ago, Alan reported that he had received a “very bad diagnosis” but that he had consulted with people he trusted. He expressed confidence in the people at Sloan Kettering and had hopes for a plan of attack that sounded equally audacious and arduous.

Though there was a thin curtain of sadness and apprehension in his voice, Alan’s general tone and style differed little in our last call from the many other conversations we had had about other ambitious, arduous, and audacious plans.

“I think we have an opportunity,” he would say. And then he would go on to describe an idea he had to encourage formal and informal educators to work for the common good, to strive for what some have called a “perpetual dream” to improve the human condition by enlarging what we all can come to know.

Our last conversation happened on the same day we had previously been scheduled to have lunch. We were to meet at the Century, where of course no business is conducted, so we just planned to talk about the future. Instead, we had that phone call.

On the call with Ellen Mappen and me, Alan spoke with his usual calmness, his usual clarity, in his usual cadence, and with that same curiously wonderful musicality that inhabited each one of his sentences. (Without knowing for sure its source, I have always attributed that sonority to the benefits that come to someone who is as comfortable speaking in French as in English.) He even mustered some humor.

Sensing our shock and our fear, I suspect, Alan took great pains to assure us that getting back to work on our mutual project was a high priority for him. As always, Alan exhibited more concern for our feelings and needs than he expected us to pay to his.

He said he would call us as his health permitted. He asked us to carry on and to share word of his call with only those who needed to know. We were to await further word from him before telling others.

Late last week, when “news” started to come out that Alan was gravely ill, I entertained the comforting illusion that this could have been an extremely bad example of something starting in facts—facts I knew to be true—and descending into rumor. I prayed for an e-mail from Alan bearing the subject line: “News of my demise has been greatly exaggerated.”

As the numbers of people close to Alan began to contact one another to share thoughts, tributes, and memories, my hopes grew fainter. We now have word that Alan died yesterday (May 4, 2014).

There will be times and occasions for proper memorials befitting a man of as many parts as Alan possessed and whose career spans so much intellectual space and so many phases in the history and development of informal education.

We will each have our opportunities to add our own meager contributions to what I am sure will be a panoptic body of tributes—a museum of its own, you could say.

For today, however, I only want to let you know that when we spoke that last time, just two weeks ago, I did get to tell Alan that I loved him. Indeed, Ellen was able to say the same and to let him know that Hailey and all in our community who had the great good fortune of working with him closely did so as well. We told him how much it means to us to work with him and we said we would miss him during his temporary absence from our work. We promised him that we would carry on in his absence. So now, in the face of this profound loss, we will keep that promise.

I need time to collect my thoughts, but something I don’t need time to think about is my first impression of Alan, an impression that has only grown in intensity in the several years we have worked together.

I remember the day and place I met him. Eliza Reilly had invited us to a SENCER regional meeting she had organized at Franklin & Marshall College. I did a talk, as did Alan.

I had become entranced with something called “informal science education” and had had a chat with some folks at NSF about an idea I had that they, and I am speaking of Al DeSena here in particular, had been particularly encouraging about.   I liked my idea (as I tend to), but I was aware just how little I knew about the world of informal science education.

It so happened that Alan, Ellen, and I got seated next to one another at the tables at lunch. Listening to Alan’s ideas, responding to his gentle inquiries, and hearing myself reframe my thoughts in response to his, I had an overwhelming sense that an adult had finally entered our conversation!

Though I now know he was only a few years older than I am and though I am blessed to have wonderful colleagues, Alan seemed to me then as he does now to be uncommonly sage, a truly wise man.

I know I am not alone in having that sense of Alan: Alan as the adult, the wise man, the friend, the understanding and patient parent figure, the man willing to lend his luster to your unpolished idea, the man rigorous and demanding of high quality first in himself and then in others, but relaxed and comfortable in manifold and diverse social situations, and, above all, the man who was a quiet, tireless, and amazingly effective worker in the causes that had the extra benefit to be ones that he shared.

The last thing Alan would want is for our memories of him and his legacy to become enshrined or, worse yet, encased, in some old-fashioned specimen display. If ever there were an occasion for a living museum, it is the celebration of Alan’s life, his work, and his place in our lives.   We will need to become the “living exhibit” of Alan’s work.

It is hard taking this in. For many of you, getting to know Alan recently—as recently as it was for me, too—seemed to be more the beginning of what we expected would be a long time of working together, not the premature and abrupt end that confronts us today.

Consolation eludes me.

Perhaps because of its title, but more for what it says to me about the human condition, as well as our need to take time to observe death and mourn, and still to keep going, I think now, not of science, but another way of knowing that was dear to Alan. I recall the words of W.H. Auden:

Musée des Beaux Arts

About suffering they were never wrong,
The old Masters: how well they understood
Its human position: how it takes place
While someone else is eating or opening a window or just walking dully along;
How, when the aged are reverently, passionately waiting
For the miraculous birth, there always must be
Children who did not specially want it to happen, skating
On a pond at the edge of the wood:
They never forgot
That even the dreadful martyrdom must run its course
Anyhow in a corner, some untidy spot
Where the dogs go on with their doggy life and the torturer’s horse
Scratches its innocent behind on a tree.

In Breughel’s Icarus, for instance: how everything turns away
Quite leisurely from the disaster; the ploughman may
Have heard the splash, the forsaken cry,
But for him it was not an important failure; the sun shone
As it had to on the white legs disappearing into the green
Water, and the expensive delicate ship that must have seen
Something amazing, a boy falling out of the sky,
Had somewhere to get to and sailed calmly on.

 

I know you will join me in extending our sympathy to Alan’s wife, Mickey, and to the remarkable family of Alan’s many friends and admirers of which we at the National Center, the SENCER-ISE project, and the SENCER community constitute another small part.

– Wm. David Burns

Originally published May 5, 2014

 

The Legacy of a Museum Legend

Priya Mohabir,
New York Hall of Science

At the core of Alan’s vision for the New York Hall of Science (NYSCI) was the commitment to providing the opportunity for high school and college students to develop their interests in science by sharing the experience of discovery with others. For nearly 30 years, the brilliance of that vision has been proven through the many programs Alan created and inspired, most notably the Science Career Ladder (SCL).

Established in 1986, the SCL program began as a series of graduated opportunities that enabled young people to interact with the public by helping visitors to engage with the science behind the exhibits and demonstrations. Combining youth development and youth employment, the SCL provides high school and college students with a meaningful work experience that offers growth through continuous training and peer mentoring.

The creation of the Science Career Ladder captures many of the qualities that made Alan so invaluable to the informal science field. Alan came to the New York Hall of Science when it was effectively derelict. The building was closed to the public and he often recounted how the first time he visited after taking the job there were puddles on the floor. He and his deputy Sheila Grinell had a knack for finding excellent colleagues, and they quickly pulled together a small committed team, including Dr. Peggy Cole and Dr. Marcia Rudy (who is still at NYSCI.) As the first exhibitions came together, Alan realized the need for a corps of floor staff who could greet the public, help to maintain the exhibitions, and generally enliven the visitor experience. The Exploratorium, a science center in San Francisco founded by Frank Oppenheimer, had created a program for Explainers, and that model was the core of a very smart and opportunistic synthesis that Alan and Dr. Cole created. They recruited students from nearby Queens College with interests ranging from theater to physics, and gave them sufficient training to become Explainers, thereby fulfilling an operational need.

At the same time, they recognized a broader need for expert science teachers. They started to shape the Explainer program into the Science Teacher Career Ladder (as it was originally called) and secured significant funding on the hypothesis that this kind of apprenticeship would encourage more young people to become science educators (before the term STEM was born). This hypothesis turned out to have significant value in encouraging STEM participation, and an early survey documented that over 60 percent of the early Science Career Ladder cohort went on to careers in STEM fields, the majority of those in STEM teaching.

This, in turn, helped to shape the invaluable Wallace Foundation supported Youth Alive program, which disseminated and strengthened youth programs at science centers and children’s museums. While Youth Alive was designed to foster youth development across many domains, the Science Career Ladder continued, and continues to this day, serving the dual purpose of enlivening a visit to NYSCI and fostering STEM careers among its diverse community of participants.

The SCL has become not only a highly recognized program that other institutions have modeled, but also an integral part of NYSCI. The Explainers are the diverse face of our museum, supporting the exploration of science with a range of skills and activities. The SCL’s mission is to encourage young men and women from across New York City to pursue STEM careers. Students participating in the SCL demonstrate enhanced science content knowledge, confidence in oral presentations, and strong problem-solving skills, and they show significant growth in communication abilities, interpersonal skills, and leadership.

In its current form the SCL reaches between 120 and 160 young people a year, with about 85 percent coming from a minority background. As the SCL has evolved, so have the programmatic supports that are offered to participants to expand their skill sets, better preparing them for their next academic and career steps. From career development workshops to opportunities to connect with STEM professionals, the program exposes its participants to a wide range of options that are there for them to pursue.

To honor Alan’s contributions to NYSCI and the field at large, NYSCI has established the Alan J. Friedman Center for the Development of Young Scientists through a generous founding grant from the Noyce Foundation. The Friedman Center will encompass the Science Career Ladder program and will create opportunities for high school and college students across New York City to explore their prospects in science, technology, engineering, and math fields. The goals of the Friedman Center are to develop NYSCI as a place where youth and community organizations can learn about STEM opportunities, with multiple pathways for engaging youth in the STEM career pipeline. As it develops, the Friedman Center will make strategic investments to develop, pilot, and roll out new events and opportunities that broaden our reach to youth in New York City. Alan’s memory will continue to be honored and his legacy will live on.

About the Author

Priya Mohabir has been with the New York Hall of Science for the last 15 years, starting as an Explainer herself. In her various roles in Education and the Explainer teams, Priya has led numerous projects developing and leading professional development for diverse audiences. As the new Director of the Alan J. Friedman Center for the Development of Young Scientists, Priya will lead the Science Career Ladder as well as the Science Career Ladder Institute. Working with the Explainer leadership team she will continue to develop new and interesting opportunities for the Explainers and Residents. We expect to add additional programs to cultivate the interests and careers of young scientists in ways we can now only imagine.

 

Personal Note:

As an alumna of the Science Career Ladder (SCL) program, the I have had invaluable support all along the way. From the motivation to challenge myself to the network of colleagues with whom I share this experience, the SCL has supported my professional growth and has introduced me to some great friends.