Citizen Science and Our Democracy

The theme for the National Center for Science and Civic Engagement’s 2009 Washington Symposium and Capitol Hill Poster Session was “citizen science.” The term usually describes the observation and data gathering activities of ordinary people, often working from or near home, and assisting a research scientist or team in a project. We were interested in a slightly different meaning of the term, however — one that would invoke scientific literacy and numeracy as essential capacities for citizens conscientiously engaged in a modern democracy.[more]

We asked: What do we really need beyond a basic understanding of the scientific method, or discrete mathematics, or elementary statistics, to make sense of the complex civic questions we face today and will face in the future? More fundamentally, though, we wanted to explore what scientific practices and democratic practices have in common. How are the two “projects” related? And what should we do to encourage each to reinforce and strengthen the other?

For help in thinking about this, we turned to one of the handful of citizen scientists currently serving as a member of Congress, Representative Rush Holt of New Jersey. A thoughtful public servant who formerly worked in the Plasma Physics Laboratory at Princeton University, Holt graced our meeting with an original, nuanced, and encouraging address. He reminded us of the common roots of science and democracy in the Enlightenment. He reviewed the critical role that science played in what I have elsewhere called “the making of our democracy.” Echoing C.P. Snow’s critique of more than 50 years ago, he lamented the separation of the scientific and non-scientific communities into “two cultures.” Lastly, he suggested how we might begin to bridge these gaps.

We asked Mr. Holt for permission to transcribe his remarks and to include them in this issue. The man whose campaign bumper stickers playfully assert, “My Congressman IS a Rocket Scientist,” kindly assented and we are pleased to present his thoughts to you.

— Wm. David Burns, Executive Director, NCSCE

Representative Holt’s Remarks

[image 20249 left border]I’m really pleased to recognize the role of Rutgers in sowing the seeds for this SENCER program. It is, I think, tremendously important. I’m delighted to see you, and to see your posters, and to hear about the programs at the various universities, and to run into some old friends like Will Dorland from Maryland, who was at the Plasma Physics Laboratory when I was assistant director there at Princeton.

This is almost to the day the 50th anniversary of C.P. Snow’s address on “!e Two Cultures.” Snow’s was an interesting observation at that time, but the cultural divide Snow described has turned into, at least in this country — and I would venture to say in other countries — a critical problem that, I think, puts us at risk in a number of ways as a society. C.P. Snow, a chemist, government advisor, novelist, and otherwise diversely oriented person was talking about England 50 years ago. But his analysis applied equally well to the United States, because at the same time we launched — and “launched” is the right word following the launch of Sputnik — into an education program in the United States that really did divide our society into the two cultures of scientists and non-scientists. !is divide persists to this day.

Following Sputnik, we set in place an educational system that was intended to produce a generation of scientists and engineers the likes of whom the world had never seen. Our initial motivation was fear and our justification was national defense. And indeed, we have produced generation after generation of the world’s best scientists and engineers.

However, we have relegated them, or allowed them to relegate themselves, to a compartment of our society, of our economy, and of our political world, and we have relegated everyone else to the extra-scientific area. !at’s dangerous. So it was music to my ears, really, when President Obama, in his inaugural address this year said, “We will restore science to its rightful place.”

Now, he made this promise in a section of his address dealing with the economy. And of course, the theme of his inaugural address was, “We’re in deep trouble, economically.”

The President was making the point that investment in science is important for us to be able to grow out of our economic problems.

But that statement — that we will restore science to its rightful place — is much richer than to say that science produces jobs. Of course, science does produce jobs, which it does, even in the short term. !at is why it’s great that there is a lot of money for science in the economic stimulus bill that was passed by Congress and signed by the president. It provides $22 billion of new research money.

But the president was saying a lot more than that science creates jobs in the short term. He was also saying that science creates jobs, productivity, and economic sustenance in

the long-term. And he was saying quite a bit more than that, when he said we will restore science to its rightful place. He said that we will do away with the kinds of censorship and stifling of science — ideological stifling of science — that has undermined a basic principal of the United States. The United States has had, over the centuries, really until roughly fifty years ago, a very scientific bend. It was not a coincidence that the guys — and they were guys, sorry to say — who wrote the Constitution called themselves in many cases, “natural philosophers.” Back then, that was the equivalent of our word scientist today.

The founders were thinking like scientists; they were asking questions so they could be answered empirically and verifiably. That’s what science is. It is a system for asking questions so you can answer those questions empirically and in a way that others can verify your empirical tests for those answers.

Every shopkeeper, every farmer, every factory owner throughout American history has had this scientific tradition. It was common for Americans to think about how things work and how they could be made better and made to work better.

We’re at a time now where, if I talk to most of my colleagues in Congress, most of your colleagues at the college or university, or any American on the street, however well educated, however able, however smart, they will likely say, “Oh, science, oh no, I’m not a scientist. I can’t understand that, that’s not for me.”

And thus we are deprived of the scientific way of thinking. The scientific way of thinking is important not just for developing new technologies, but for creating the kind of self-critical, self-correcting, evolving society we need to create. The whole balance of powers in our constitution, the whole idea of openness that we embrace as a democracy, these are very scientific in nature.

It is so important that we try to bridge this chasm, merge these two cultures, so that no educated person in America would ever say, “Oh, that’s science, I can’t think about that.”

Your courses are so good because you work at from both directions. Much of my career has been as a teacher, and any teacher will tell you, the first challenge is motivation. You know, there is nothing you can teach. That’s the dirty little secret that faculty members sometimes learn. You can only help students learn.

Students have to have some reason to do the work, a purpose for learning the material. You provide that purpose in many cases by reminding them that learning has to do with the quality of their life in areas that they may never have thought had anything to do with science. You have shown them that they don’t have to wear lab coats or do equations in order to bring a scientific understanding, and more important, a scientific frame of mind, a kind of questioning attitude, to their lives, their work, and their roles as citizens.

Looking for empirical answers and independent verifications is essential to help find the answers to the important questions in daily life, whether it’s trying to decide what kind of soap to buy, or what kind of college to attend, or what kind of candidate to vote for. In what you do in your courses I see an attempt to provide for students that very kind of motivation.

But you also are working at it from the other end, nudging the scientists to move out of their culture. You are helping scientists understand that non-science students at the university — and the 80 percent of the American population who say science is not for them — are not just a necessary nuisance in their lives, but really the whole reason that we practice science.

Why do we practice science? So that we can have a better quality of life, so that we can understand how the world works, get along with each other, and provide for the needs, and not just material needs, the needs of the people and society. You know, I’d like to say that President Obama thinks like a scientist. He might dispute that, but I see it in how he conducts meetings. I see how he asks questions in a way that they can be answered empirically with evidence. He asks questions with an open mind, recognizing that the answer to the question must necessarily be regarded as provisional. You know every scientist — every physicist anyway — has somewhere in the back of his mind or her mind that whatever it is you think about how the world works, how this subject works, what is known about plasma physics or planetary science, is provisional. !ere might just be a patent clerk in Switzerland who has a little different idea or maybe even a very different idea. And empirically, some day that patent clerk’s ideas might supersede everything you thought you knew.

It is this kind of thinking that has made science so successful. Science gives a kind of reliable knowledge, provisional though it may be, that allows people to improve their lives.

It is this kind of thinking that allows citizens to improve their government. It is why we are the oldest surviving constitutional government in the world, because the authors were thinking like scientists, and they set up a system that allowed us to keep thinking like scientists.

Every business major and English composition major that you bring in to your classes is not just someone who can have the beauties of science unlocked for them in a small way. It may be that this student will be the citizen who will help move our society along through scientific thinking.

You are doing a favor for each faculty member you nudge out of her or his narrow specialty to be exposed to the great unwashed non-science student body. You are doing a great favor by reminding them their science is all about. They’re not doing science for their own esoteric entertainment. A few might be, but that is not why the National Science Foundation puts out billions of dollars a year. That is not why this Congress is interested in science. We are interested and making investments because of what this means for our society and the welfare of all of these people who are in this nation conceived in liberty and dedicated the proposition, that all, not just those who did differential equations, or you know, spectrophotometry, are equal, and deserve the benefits of our society.

So what you are doing is the missing link between things that the NSF, and the NIH, and NIST and others have funded for years. And what all the rest, the 80 percent non-scientific society have not only been deprived of, but have ignored for all these half-century, roughly speaking.

So thanks for doing what you do. I hope you understand the importance of what you are doing. I certainly do. And I thank you very much.

Download (PDF, 98KB)

Please click the link above to download a PDF copy of the above article.

Science and Civic Engagement in the Developing Democracy of Georgia

-Science opens the mind.
Robert Lawrence Kuhn –

Introduction

The situation concerning science and education in the former Soviet Union has been described in articles by experts from the former Soviet republics and by foreign researchers (Dezhina, Graham, 1999; Khitarishvili1, 2007; Kuchukeeva, O’Loughlin, 2003; Kuhn, 2003; Saluveer, Khlebovich, 2007). It is obvious that science had an exceptionally favored position in the former Soviet Union. Together with education, science was linked to ideology as an important part of national politics. Pure science and applied technology were highly developed in many fields.[more] Soviet scientists were at the cutting edge of mathematics and in several branches of physical science, especially nuclear physics, chemistry, and astronomy. At the same time, Soviet scientists were almost completely isolated from the international scientific community. Only a few selected scientists were free of restrictions and could collaborate with research institutions in Western countries.

The core of fundamental science was the Academy of Sciences of the USSR and the various national academies of science in Soviet republics, which received their budget directly from the government. Financial support for research was distributed according to political priorities and political decisions, without any peer review. Much of the research was carried out outside the academy system — most of this research was of an applied nature, related to weapons systems. Science served the power and strength of the state.

The development and advancement of science was a national priority for the Soviet government and top scientists were held in high respect. To be a scientist was very prestigious and large numbers of students graduated in STEM fields every year. Science was emphasized at all levels of education. The Soviet education was free, highly specialized, and didn’t have a tradition of liberal education. Division between scientific research and teaching was quite strict. Except for a few, the universities were not as strong in basic research compared to the academy institutes.

Current State of Science and Education

The collapse of the Soviet Union, the end of centralized plan­ning and financing of science and education, the financial cri­sis, and the brain drain had a particularly damaging effect on science and education within small, newly independent coun­tries such as Georgia. Scientists and educators had to face a new reality. Because governmental financing was now very low, it was impossible to maintain excellence in research and higher education. Faculty and students had to look for their own research funding via joint research projects in private schools, educational projects, or by studying abroad. Going abroad to study was difficult for students because of financial cost and major differences in the structure of higher education between Georgian and foreign universities. The consequences of long-time isolation, lack of skills, lack of knowledge of for­eign languages, and lack of information channels associated with severe financial problems inhibits the ability of Geor­gian scientists and educators to get financing even within pro­grams that are prioritized and specially targeted for Georgia (e.g.inco,intas etc.). The need for reforms within Geor­gian science and education was obvious.

Reforms in science and education were initiated in 2000. The Georgian Academy of Sciences lost its function and all research institutes were placed at the disposal of the Min­istry of Education and Science. The most significant source of research funding became the Georgian National Science Foundation (gnsf), created within the Ministry of Science and Education of Georgia, whose funding process is based on competition and peer review. An optimization of univer­sities and research institutes was also conducted. Georgian universities along with universities from Armenia, Azerbaijan, Moldova and Ukraine have declared their willingness to intro­duce the Bologna measures in their higher education systems. (Documentation regarding the Bologna process is available at the Georgia Ministry of Education and Science [2009].) This commitment includes Georgian participation in estab­lishing the European Higher Education Area (ehea) by 2010, coordinating degree requirements, promoting international cooperation, and facilitating the mobility of scientists between institutions. The introduction of structural changes and im­provements in the quality of teaching should strengthen re­search and innovation in Georgia. The Government claims that the concepts of “continuing education” and “education oriented society” are the priorities of new educational policy. New curricula, along with new teaching and learning meth­odologies, were introduced to the universities. Despite these changes, our understanding of Georgian science development is still not defined.

Introduction ofSENCER

To compensate for a deficiency in knowledge and skills of Georgian scientists and educators, training and workshops were conducted in Tbilisi for those interested in continuing their professional work. International conferences, workshops, seminars have been designed to highlight the new ways that Georgian scientists are successfully pursuing their research. In June 2003, our group organized one such conference: “Gain­ing Knowledge and Skills Needed for Scientific Communica­tion and Collaboration.” This conference was sponsored by Sigma Xi, the U.S. National Academy of Science, unesco, Iowa State University, iwise, the International Network for Successful Scientific Publications, crdf, grdf, the Geor­gian Academy of Science, I, Beritashvili Institute of Physiol­ogy, Georgian Technical University, the Armenian National Science Foundation and other international and national organizations.

The conference program offered a selection of topics that were designed to address the interests of working scientific re­searchers. The program included information about Sigma Xi, scientific book/journal donation programs, research resources used by Iowa State University and other American universi­ties, gateways/directories, other online publication resources, scientific databases and specialized search engines, scientific equipment donation or refurbishing, research, and study op­portunities abroad. There were also some special interactive sessions on distance communication in science, including electronic journals, electronic conferences, electronic lectures, preparing manuscripts for international publications. Reports on innovative scientific work in Georgian universities and re­search institutes were also organized. During this conference, scientists and science educators from Georgia and Armenia had their first introduction to the ideals, philosophy and goals of the SENCER project. The presentation was made by a spe­cial guest of the conference and co-principal investigator of sencer project, Professor Karen Oates.

The SENCER approach and the issue of civic engagement are very relevant for the Georgian educational system. Civic engagement takes many forms and can be measured by vari­ous indices. One of the most comprehensive definitions of civic engagement belongs to Thomas Ehrlich (2009, vi, xxvi), former president of Indiana University:

Civic engagement means working to make a difference in the civic life of our communities and developing the combination of knowledge, skills, values, and motiva­tion to make that difference. It means promoting the quality of life in a community, through both political and nonpolitical processes. . . . A morally and civically responsible individual recognizes himself or herself as a member of a larger social fabric and therefore consid­ers social problems to be at least partly his or her own; such an individual is willing to see the moral and civic dimensions of issues, to make and justify informed moral and civic judgments, and to take action when appropriate.

Today, Georgia is struggling to achieve democratization and sustainable economic development, and to alleviate pov­erty. Like other former Soviet countries (Economic Develop­ment, 2003), science and research are still less popular among young Georgians than other more prestigious subjects—man­agement, law, economics, etc. We believe that Georgian uni­versities should contribute to national goals by educating students for active, civically engaged citizenship. In order to develop the essential knowledge needed to achieve these goals, science education should be strengthened and promoted. It is important that scientifically literate people become actively involved in social and political processes within Georgia.

Despite the pressing circumstances, the issue of how sci­ence and democracy interact—How does science engender democracy? How does science and science education change the way people think? How can science stimulate new civic engagement and responsibility of citizens?—is not part of the political, pedagogical or scientific literature in Georgia, in contrast to foreign countries and especially the United States (Burns, 2003; Jordan, 2006; Kuchukeeva, O’Loughlin, 2003; Kuhn, 2003). The need for discussions and debates on these issues are critical in Georgia and provide a promising way to create the national perception of science.

SENCER in Georgia

In 2003 we participated in the sencer Summer Institute for the first time based on invitations from Karen Oates and iwise co-director Ardith Maney. We were impressed by sencer topics, which demonstrated the possibilities of teaching science in a civic context. Later we read the article by Robert L. Kuhn (2003), “Science as Democratizer,” and were inspired by his very interesting suggestion that “science engenders democracy by changing the way people think and by altering the interaction among those who make up the so­ciety.” Kuhn also proposed that a “key to changing the way people think is critical thinking” and provided the following comments on science education:

Basic and applied science and science education are all needed to nourish critical thinking. Science, to be science, cannot stagnate. If scientific education en­forces the scientific way of thinking, scientific discov­ery energizes it, so that both education and discovery nourish and sustain our democracy. And science needs democracy as much as democracy needs science. Vig­orous scientific research reflects democratic principles in action, and free and open scientific inquiry cannot take place without the protective support of a robust democracy (Kuhn, 2003).

Confirmation of our interest in the sencer program was achieved by the outcomes of a two-year sencer-Georgia pilot project that started in September 2004 in three major universities within Georgia: I. Javakhishvili State Univer­sity, Technical University, and Medical State University. This project provided a wonderful possibility to begin restoring the prestige of science and stimulating an interest in science among Georgia’s youth. With support from the university ad­ministration, teaching and learning centers were established in all three universities. Many important activities were per­formed through these centers and the central component of all activities was “civic engagement.” This theme was used in all eight courses that were newly introduced in Georgian universities.

  • Environment and Health,
  • Social Environment and Human Behavior,
  • Global Ecological Disaster and Georgia,
  • Chance,
  • Chemistry and the Environment,
  • The Coming Energy Crisis and Then What? Apocalypse or Sustainable Development,
  • Some Steps Away from Death, and
  • HIV in Georgia.

Major sections of each subject were prepared in close collabo­ration with scientists from American universities that partici­pated in the sencer program, which were then adapted to the context of Georgia.

One good example of stimulating students’ curiosity and problem-solving actions via science education is provided by the results of the SENCER-based presentation of “Envi­ronment and Health,” which was introduced into secondary school (mainly in tenth, eleventh grades) and high school curricula. Students prepared projects and demonstrated their abilities to determine and solve problems.

The SENCER faculty team from Georgia attended the SENCER Summer Institute four times. Within the framework of the SENCER-Georgia project,we organized one-month in­ternships in Georgian campuses for six U.S. students during May 2005, together with meetings and seminars for U.S. fac­ulty members from partner universities. We also established contacts with Armenian scientists and educators.

The Future: Dreams and Aspirations

The SENCER-Georgia project finished in 2006 but we con­tinue to follow our goals: to strengthen science in Georgia and to stimulate our youth’s interests to science via strong collaboration with U.S. educators and scientists. For these reasons the Teaching and Learning Centers continue their work. We are still developing new SENCER subjects in collaboration with American and Armenian colleagues, such as:

  • Nanotechnology,
  • Drug abuse and behavior,
  • Science ethics,Media
  • Integrated neurophysiology,
  • Statistical nature of traffic (telecommunication),
  • Dynamic stability of power systems,
  • Sustainability in hydro-engineering,
  • Hydrology for civil engineering, and
  • Artificial intelligence.

Each of these courses will include features of civic engagement and will use innovative teaching methods.

Together with the Georgian Chapters of Sigma Xi, we plan to begin discussions and debates on the concept of Georgian science. We are also working to promote further integration of Georgian scientists into the international sci­entific community. For this purpose we are going to organize electronic meetings, conferences, lectures, workshops and symposia with U.S. universities. Our other activities will in­clude the creation of the “Center of Innovation, Eurasia” in collaboration with U.S. and Armenian colleagues, joint scien­tific research, and organizing a series of scientific lectures for Georgian high school teachers and students. Because the phi­losophy and ideals of the sencer approach have stimulated special interest among Georgian scientists, educators and teachers of high schools and colleges, the sencer-Georgia group is planning to establish a Georgian-American sencer High School in Tbilisi.

In conclusion, we say that “This is not a time to be tim­orous. . . . Science needs democracy as much as democracy needs science.” (Kuhn 2003)

About the Authors

References

Burns,Wm. David. 2002.”Knowledge to Make Our Democracy”, Liberal Education,88 (4): 20–27.

Dezhina I., and L. Graham. 1999.”Science and Higher Education in Rus­sia”, Science, new series, 286, no. 5443: 1303–1304.

Economic Development and Poverty Reduction Program of Georgia.2003. Tbilisi: Government of Georgia.

Ehrlich, Thomas, editor. 2000. Civic Responsibility and Higher Education.Westport, ct: Oryx Press.

Georgia Ministry of Education and Science. 2009. Search results for “Bologna process,” http://www.mes.gov.ge/index.php?lang=eng (accessed December 13, 2009).

Jordan,Trace. 2006.”Science and Civic Engagement: Changing Perspec­tives from Dewey to DotNets.” In Handbook of College Science Teach­ing, edited byJoel J. Mintzes and William H. Leonard. Arlington, va: National Science Teachers Association Press.

Khitarishvili, Tamar. 2007. Environment for Human Capital Accumu­lation: The Case of Georgia. Paper Presented at the Minnesota International Development Conference.

Kuchukeeva A., and J. O’Loughlin. 2003.”Civic Engagement and Demo­cratic Consolidation in Kyrgyzstan.” Eurasian Geography and Econom­ics44 (8): 557–587,

Kuhn RL, 2003.”Science as Democratizer.” American Scientist Online, September-October 2003. http://www.americanscientist.org/issues/ pub/science-as-democratizer.

Revaz, Solomonia. 2002.”Georgian Awareness and Training Network.” EU and Georgia: New Perspective, 4–6, April–June. Saluveer, M. and D. Khlebovich, 2007.”Recommendations on Georgian Science Policy Development,” The European Union Project. unesco.2005.”The Russian Federation” in UNESCOScience Report,137–176. Paris: UNESCO Publishing.

 

Download (PDF, 115KB)

Please click the link above to download a PDF copy of the above article.