Using the SENCER Approach in 
Collaborating Across Disciplines: 
Participating in Do Now U

Introduction

This project report details a pilot venture that paired two undergraduate courses at the University of Wisconsin-Whitewater: (a) Environmental Geology, an upper-division general education science course, and (b) College Writing in English as a Second Language (ESL), a first-year composition course for international students whose second language is North American English. Students enrolled in these two courses collaborated in writing blog posts on scientific topics with societal repercussions as part of the Do Now U project, a joint initiative between the National Center for Science and Civic Engagement (NCSCE) and the education division of KQED Public Media. Collaborating in this project enabled students to use the discourse of science in authentic communication with an identified audience while conducting a group project. Evaluation shows that students enjoyed this self-directed learning experience, using digital media to communicate and to create a digital document on a scientific and social issue.

NCSCE sent a call for participation to college educators in fall semester 2016. In early January 2017, interested participants attended a webinar on project participation guidelines. Instructors also selected a date for submitting their posts during spring semester 2017. They then formed student teams, each of which proposed and decided on a topic, formulated a discussion question, and ultimately composed a blog post for the KQED Do Now U website. KQED furnished a template for blog posts, which required background information and explanation of both positive and negative implications of the topic at issue. Posts also included links to relevant videos, images, and other reliable online resources. KQED education staff selected one blog post per participating institution. Once published to the web, the posts were open for public discussion and comments.

Collaborating on a Do Now U Post at the University of Wisconsin-Whitewater

Naturally, Environmental Geology and College Writing in ESL, although both undergraduate courses, differed in several ways. The two sections of Environmental Geology, taught by Bhattacharyya, each enrolled 24 students and met twice a week in 75-minute blocks. The course follows the SENCER approach to inquiry, encouraging students to investigate unsolved problems relevant to today’s society, so that they not only develop content knowledge, but also improve critical thinking skills (Burns, 2002). Environmental Geology is a hands-on, experiential course, required for environmental science majors with an emphasis in the geosciences, but open as an elective to non-majors. Therefore, the students enrolled in the course represented a variety of academic backgrounds and interests. The course is thematically organized to inspire further exploration of topics chosen by students.

College Writing in ESL, team-taught by Huss-Lederman and Deering, enrolled 13 students and met four days a week in 75-minute blocks. The majority of the students who enroll in this course are international students, new to the United States and to university study. They represent a broad range of English proficiency and, like most first-year college students, are novice academic writers.  Typically, this writing course has been organized thematically, often with human rights or social responsibility as broad topics, and so developing a semester-long environmental theme for the course was a natural fit. One goal of this composition course is to be an onramp to academic success at the university. Largely, this means providing opportunities for students to improve academic English proficiency, while simultaneously helping students to access programs that position them for success. Participating in this project enabled international students to interact with native English speakers; both groups completed an academic research project, using the SENCER approach to inquiry to enhance college-level, academic literacy in English. By the end of the project, Deering and Huss-Lederman had become advocates for the SENCER approach, continuing to develop project-based learning opportunities for their students throughout the semester even after the collaborative project ended.

In each course, the Do Now U project served a different purpose. In Environmental Geology, the assignment took on a minor role. Participation gave students the opportunity to engage in both writing to learn and writing for an audience beyond their teacher through a novel, small-stakes assignment. It also simulated an increasingly common professional situation—asynchronous collaborative writing in a medium less commonly used in a course assignment, an academic blog post to a website external to the university. Students were placed in groups based on their topic of interest, so students from both sections were required to work together, and in some cases with international students from the writing course. Students developed blog posts outside of class, but incorporated their research into class discussions. Geology students received feedback on topics along with possible questions from Bhattacharyya as comments on homework, and they were free to contact any instructor with questions concerning the posting assignments.

Since the college composition course is devoted to argumentative writing that synthesizes information from external sources, the Do Now U project took on a major role because it required international students to practice these academic skills. Reference librarians offered students a weeklong seminar in identifying and evaluating web-based resources.  Students read and wrote short essays, utilizing cause and effect and problem/solution structures. Reading assignments also emphasized summarizing, paraphrasing, and identifying and interpreting quotations—all skills essential to academic writing. Generally, two international students were assigned to Do Now U project groups of two or three geology students, although international students with stronger English proficiency or a more autonomous learning style could decide not to have a composition classmate as a partner. However, for many international students, having a classmate as a partner in this project gave them confidence in the research and collaborative writing process. In fact, the international students continued to develop their English academic writing skills after this project was finished, either by continuing with their original ideas or examining a related environmental topic, which they then presented as posters during the campus Sustainability Day in April.

Although the goals of the geology and English courses were not the same and incorporated the Do Now U project differently, courses had to follow the same timeline for preparing posts. To facilitate the online writing process, instructors also assigned students roles, such as background writer, pro argument or con argument writer, editor, and media finder. Three common collaborative face-to-face sessions were held for students to complete the post together. Ultimately, UW-Whitewater submitted 16 blog posts for consideration. On March 15, 2017 the entry, “Do the Benefits of Aquaculture Outweigh Its Negative Impacts?” was posted.

Evaluating the Project

An online evaluation with questions targeted to each course was sent to all students in March, 2017. There was nearly a 100% response rate by geology students. Thirteen students were enrolled in English 162 when the project started, but only eleven completed the course, and six completed the survey. The findings are summarized below.

Geology Students

In the environmental geology course, collaborating on a blog post for a public media outlet was a novel experience, from determining a topic and refining a discussion question to writing a backgrounder that included links to further information.

95% indicated that they had learned something new about an environmental topic that they had chosen and researched themselves, with some commenting that they had come to understand new perspectives and to identify their own biases.

Many students indicated that working in a group offered them new perspectives on how to work with others; those who worked with international students appreciated the opportunity to do so.

Students enjoyed working with multimedia resources and developing a blog post, as opposed to writing a traditional research paper.

Some students found group work to be frustrating when group members did not contribute to the team effort.

International Students

Collaborating to write a blog post for a public media outlet was also a novel experience for the international students. The emphasis in this assignment, as well as in others in the course, was to develop and strengthen collegiate writing proficiency in English. Students were asked to reflect on their development.

On a scale of “not confident” to “very confident,” international students were asked to reflect on their growth as academic writers in English. All students indicated that they felt “somewhat” to “very confident” in their ability to locate appropriate academic resources and to evaluate their reliability.

On a scale of “not confident” to “very confident,” students indicated that they felt confident providing academic summaries of resources and preparing counterarguments.

All students reported that their academic vocabulary had improved.

None of the students indicated disappointment if their team’s work was not chosen for publication. Overall, the experience was positive for students enrolled in both courses.

What the Instructors Learned

This pilot was the first time that these three instructors collaborated on a public writing project, let alone one that paired upper-level students with novice academic writers who communicate through ESL. Observations of students throughout the project, as well as student survey results, led to the following conclusions:

  • Using the template provided by KQED and reviewing past posts to understand how to complete the assignment from the beginning focused the writing process for all students and made assigning writing roles to students easier. Furthermore, the template’s structural guidelines freed students to focus on refining their questions and finding relevant resources instead of wondering how to organize the information.
  • Making the theme of the English course environmental sustainability and registering for a blog posting date mid-semester gave the first-year international students time to build background knowledge in order to be strong partners to the geology students. All students ultimately shared common content knowledge, which leveled the playing field for the assignment.
  • Assigning international students to write the negative position on a topic helped them to conceptualize counterarguments, an important skill in argumentative writing.
  • Geology students in groups with international students enjoyed the opportunity to meet and work with students from other countries.
  • All students appreciated the chance to share information with a broader audience outside of their courses.
  • Although many students liked building a document by communicating online, they also appreciated the face-to-face work. Face-to-face meeting in the university library allowed all students to review work together.
Changes for Future Projects

Overall this pilot worked well; however, certain modifications would improve the structure of future collaborative writing projects. For example, scheduling the English course and the geology courses at the same time of day would allow for more convenient face-to-face collaboration among all students as a learning community. Although most students enjoyed this assignment, some were frustrated when not all group members pulled their weight. Because this also happens in the workplace, students need to know how to manage such situations and how to take responsibility for their specific roles on a team project. Restructuring the course assignments to emphasize individual accountability to the group would help students to develop this skill. Students would benefit from reflecting on the experience of working in groups and learning how individual actions affect the team.

Discussion

Both collaboration and open-ended research-based projects are high-impact practices (HIPs), noted for promoting strong learning outcomes in higher education that translate to participation in a globalizing society (Kuh, 2008). Indeed, an analysis by Kilgo, Sheets, and Pascarella on the effectiveness of HIPs on the goals of liberal arts education indicates that these two practices are “. . . significant, positive predictors for a variety of liberal arts learning outcomes” (2015, p. 522). Students participating in the Do Now U project worked together to research issues in which society affects the environment. Such learning practices fall within the domains of cognitive and interpersonal competence, integral to 21st-century skills (National Research Council, 2012).  Project-based learning is also a natural fit in the SENCER paradigm, as it promotes student-centered, self-directed, deep examination of issues.

Additionally, students participating in groups composed of both U.S. and international students experienced working with individuals from a culture other than their own, an important component of intercultural competence (Kuh, 2008). Although students enrolled in Environmental Geology would have been able to carry out this project on their own, sharing the project with first-year international students enabled all students to improve intercultural competence within an international academic community. The ability to work as a team, not only face-to-face but also online, is an important competency in the global workforce (Moore, 2016).

In the English course, working with unsimplified, authentic texts and communicating with native speakers in English allowed students to conduct research and to write for a specific purpose and audience far beyond their ESL class. Such practice helped them to focus on the intellectual purpose of researched writing rather than on the mechanical aspects of citation and reference, which, although important, should not occupy the forefront of writing to learn (Howard and Jamieson, 2014). Collaborating with students in the geology course on this project required ESL students to become knowledgeable about an environmental concern and to communicate with others using both academically and socially appropriate language in speech and writing. Furthermore, project-based learning naturally promotes the use and development of the four language skills (speaking, reading, writing, and listening) and subskills (vocabulary, grammar, and pronunciation) in an integrated way and fosters learner autonomy (Beckett and Slater, 2005). The sustained opportunity to use academic language beyond the English composition classroom in a scientific theme put these international students on track for academic language development and learning that would serve them in courses beyond this one. Such educational practices may become increasingly important as the number of ESL students enrolled in English-medium institutions of higher education around the world grows (Fenton-Smith, Humphreys, Walkinshaw, Michael, and Lobo, 2017).

For the geology students, the experience of asynchronous, collaborative writing was a gateway into an increasingly common mode of professional communication in both academia and the workplace. Students were also placed in the novel situation of sharing information that they had learned independently with a wider audience. Although the project was a low-stakes assignment in terms of the effect on the course grade, students engaged in several HIPs—collaborative group work, working across cultures, and a writing-intensive assignment, while engaging in self-identified, open-ended questions where science and social responsibility came together.

Conclusion

A SENCER course in the sciences is different from a composition course that uses science topics as a springboard to academic writing, yet the opportunity to communicate about science can reach beyond science courses. Collaborating on Do Now U demonstrated how this type of bridge worked—bringing group writing to a science course and introducing SENCER practices into a composition course for international students. Further, it exemplifies how collaboration between the humanities and natural sciences, using a SENCER approach, benefitted students at different stages of university education.

Acknowledgements

Special thanks to Andrea Aust, Director of Science Education at KQED Public Media, and her team for guidance and editing support for our students, and to the anonymous reviewers of this manuscript for helpful suggestions.

About the Authors

Prajukti Bhattacharyya, PhD

Prajukti (Juk) Bhattacharyya is a Professor in the Department of Geography, Geology, and Environmental Science at University of Wisconsin-Whitewater. She received her PhD from the University of Minnesota in 2000.  Her background is in Hard Rock Geology and Geoscience Education.  She teaches courses on volcanoes, structural geology, rocks and minerals, plate tectonics, and environmental geology.  Her research interests range from geochemical analyses of igneous and metamorphic rocks to volcanic activities.  She is also involved in STEM education research, especially on ways to help students learn and on the assessment of student learning.

Susan Huss-Lederman, PhD

Susan Huss-Lederman is Professor of Applied Linguistics and Teaching English as a Second Language (ESL) in the Department of Languages and Literatures at the University of Wisconsin-Whitewater, where she has taught since 1995.  Susan has taught ESL for 30 years and has expertise in professional development of pre-service and practicing teachers, as well as in ESL curriculum development. For 13 years, Susan co-directed several federally funded professional development projects for teachers of English language learners in Wisconsin. She has also trained English teachers in Mexico and Ecuador. Currently, under the auspices of the Galápagos Conservancy and the Scalesia Foundation, Susan leads a team of educators offering ongoing professional development in English education for sustainability in the schools of the Galápagos. In 2016, Susan received a Teaching Excellence Award given by the University of Wisconsin System Board of Regents.

Brianna Deering, MS

Brianna Deering is a Lecturer in the English Language Academy at the University of Wisconsin-Whitewater.  Educating students has been her passion for the last 25 years. She began her teaching career in elementary education and transitioned to adult education, with the last five years being at the college level. She has taught a variety of ESL courses, from introductory to advanced English, as well as English for business communication and the healthcare system.  She has organized conversation groups, service learning projects, and community outreach programs as ways to expand the cultural knowledge of her international students.

References

Beckett, G., & Slater, T. (2006). The project framework: A tool for language, content, and skills integration. ELT Journal, 59(2), 108–166. doi: 10.1093/eltj/cci024

Burns, W. (2002). Knowledge to make our democracy. Liberal Education, 88(4), 20–27.

Fenton-Smith, B., Humphreys, P., Walkinshaw, I., Michael, R., & Lobo, A.  (2017). Implementing a university-wide credit-bearing English language enhancement programme: Issues emerging from practice. Studies in Higher Education, 42(3), 463–479. doi: 10.1080/03075079.2015.1052736

Howard, R. M., & Jamieson, S. (2014). Researched writing. A Guide to Composition Pedagogies (2nd Edition), 231–247.

Kilgo, C. A., Sheets, J. K. E., & Pascarella, E. T. (2015). The link between high-impact practices and student learning: Some longitudinal evidence. Higher Education, 69(4), 509–525. doi:10.1007/s10734-014-9788-z

Kuh, G. (2008). High-Impact Educational Practices: What They Are, Who Has Access to Them, and Why They Matter. Washington, DC: Association of American Colleges and Universities.

Moore, C. (2016). The future of work: What Google shows us about the present and future of online collaboration. Techtrends: Linking Research and Practice to Improve Learning, 60(3), 233–244. doi:10.1007/s11528-016-0044-5

National Research Council. (2012). Education for Life and Work: Developing Transferable Knowledge and Skills in the 21st Century. Washington, DC: The National Academies Press. https://doi.org/10.17226/13398

References

American Psychological Association (APA). (2018). Civic engagement. Retrieved February 2, 2018 from

http://www.apa.org/education/undergrad/civic-engagement.aspx.

Association of Science-Technology Centers (ASTC). (2014, November/December).  Reconstructing STEM in our schools. Dimensions. Retrieved February 2, 2018 from http://www.astc.org/astc-dimensions/reconstructing-stem-schools/.

Center for Civic Engagement (CCE). (2014). What are civic life, politics, and government? In National standards for Civics and Government, 5–8 content standards. Retrieved February 2, 2018 from http://www.civiced.org/standards?page=58erica.

Dwyer, L. (2014, July 12).  Social issues Americans talk the most about on Twitter. TakePart, Participant Media. https://www.takepart.com/photos/10-social-issues-americans-talk-about-twitter-most/.

Ehrlich, T. (Ed.). (2000). Civic responsibility and higher education. Phoenix: The Oryx Press.

Friedman, A. (Ed.). (2008). Framework for evaluating informal science education projects. Report from a National Science Foundation workshop. Retrieved February 2, 2018 from http://informalscience.org/sites/default/files/Eval_Framework.pdf.

McCallie, E., Bell, L., Lohwater, T., Falk, J. H., Lehr, J. L., Lewenstein, B. V., Needham, C., & Wiehe, B. (2009). Many experts, many audiences: public engagement with science and informal science education. Washington, DC: Center for Advancement of Informal Science Education (CAISE).

New York Times. (2006). The definition of civic engagement. Retrieved February 2, 2018 from http://www.nytimes.com/ref/college/collegespecial2/coll_aascu_defi.html.

Ostman, R. (2006). STEM community partnerships and organizational change: Testing a scalable model to engage underrepresented children and families. Proposal to National Science Foundation from the Science Museum of Minnesota.

United Nations.  Global issues overview. Retrieved February 2, 2018 from http://www.un.org/en/sections/issues-depth/global-issues-overview/index.html.

Wildlife Conservation Society (WCS). (2009, June 24). Congo gorilla forest celebrates 10 years and $10.6 million raised for Central African parks. WCS Newsroom. Retrieved February 2, 2018 from https://newsroom.wcs.org/News-Releases/articleType/ArticleView/articleId/4891/Congo-Gorilla-Forest-Celebrates-10-Years-and-106-Million-Raised-for-Central-African-Parks.aspx.

Wetmore, J., Bennett, I., Jackson, A., & Herring, B. (2013). Nanotechnology and society: A practical guide to engaging museum visitors in conversations. NISE Net and The Center for Nanotechnology in Society. Retrieved February 2, 2018 from http://www.nisenet.org/catalog/nanotechnology-and-society-guide.

Wikipedia. 2017. Civic engagement.  Retrieved February 2, 2018 from https://en.wikipedia.org/wiki/Civic_engagement.

Download the article:

Download (PDF, 668KB)

Building a Greenhouse in a Community Farm: Urban Science and Community Democracy

Abstract

A greenhouse program in a community garden in Brooklyn, New York, is developed for year-round urban farming. The program exercises technical skills to design and build the greenhouse, and also exercises community democracy skills to address interpersonal issues such as land usage in over-crowded spaces and volunteer organization operations. We describe here the planning and construction of the greenhouse and also the process of community group discussion, debate, and voting in a volunteer run community garden.

Introduction

The urban environment of New York City (NYC) offers an endless supply of sensory and cultural experiences, but it does not offer much by way of open green spaces, and even less access to healthy, locally sourced food. Community gardens are green spaces in which the residents enjoy, steward, and cultivate a small plot of soil in the city. There are more than 900 community gardens across the five boroughs (Design for Public Space 2014), each one with a unique governance and farming mission. Organic farming for food production and education is vital, especially in urban environments where the availability and desire for whole food based diets are rare.

The community garden discussed in this report is located in Northern Brooklyn and occupies the land of three adjoining building lots. The garden has nearly one hundred members, operates a public compost collection system, and has over 1300 square feet of organic vegetable growing space. Until recently, the winter all but stopped our farming activities except for the use of small cold frames to grow greens and seedlings through the colder months. The next step in the garden’s mission to grow food and educate the community was to establish a year-round gardening program in a greenhouse. This project report describes the obvious and non-obvious parts of the project that were important to ensure a successful outcome, including grant writing, technical design and construction, and, most importantly, community democracy.

Planning Stages

The greenhouse development was funded by a generous grant from Citizens Committee of New York City. The grant mission statement was to develop a year-round farming space so that seedlings could be grown in the early spring for farm use and public sale, and to offer an educational and public laboratory space for anyone interested in greenhouse growing. The grant was written by three garden members during the winter of 2016 and notice of the $2300 award was given in the spring of 2017.

It is becoming increasingly important, especially in NYC, to justify the use of land space and grant money. There are many groups developing new metrics to understand and measure the impact of their community projects (Design for Public Space 2014). The metrics to measure the outcomes of the greenhouse are

1. Count of seedlings grown that are distributed to the farm

2. Revenue from greenhouse-grown seedlings at public plant sales

3. Record of crop yields from greenhouse-grown plants

4. Record of events and number of garden members working in the greenhouse.

The grant application included a proposed location of the greenhouse with adequate sun in the winter months, since a greenhouse relies on the sun for passive heating. From an aesthetic viewpoint, it is important to place the greenhouse in a position that does not obtrude on the visual experience of the garden. To accommodate these requirements, a south-facing space was chosen on the edge of the farm area, which is visually buffered by surrounding trees to the north. The greenhouse construction must also follow all zoning laws. This type of greenhouse would be considered a noncommercial greenhouse (Rules of the City of New York).  In addition, the construction must follow building codes, including the roof loads for snow (Department of Buildings, New York City).

The average price per square foot of Brooklyn real estate is approximately $750 (www.trulia.com). This expense creates a huge pressure on the utilization of open spaces. Allocating eight square feet (worth approximately $48,000) for a greenhouse is thus a difficult decision. Even though the dollar value is not an actual cost, it does reflect the challenges confronted when proposing to use shared open space.

Community Democracy

Our community garden is a democratic organization comprised of community volunteers, and the deliberations to build the greenhouse presented a very valuable and in-depth exercise of community democracy. The ages of the participants ranged from children to senior citizens, and the team was comprised of architects, scientists, lawyers, artists, teachers, and corporate workers with varying skill levels specific to greenhouse construction. Some members supported the construction of the greenhouse, whereas other members were opposed to the project. Ideally, a rational and scientific approach can be a valuable strategy for moving forward while acknowledging the input of all members.

The primary question to address was whether or not to add an additional structure in the garden, because the surrounding urban environment is made of human made structures with small amounts of green space. To address this concern, the design of the greenhouse was modified to minimize the total vertical height by making a gable roof instead of a simpler shed roof.  A slope is needed for snow and rain runoff, and an angled roof also provides increased light transmission. Additionally, we noted that a Spiraea shrub on the east side and overarching trees on the north of the greenhouse will visually buffer the structure in the summer months. Garden members stressed that a greenhouse structure is visually transparent, and that it is also a natural garden structure with visual vegetation inside.

Aside from the overall visual design of the garden space, we needed to consider sunlight exposure of the greenhouse and the shadows that it casts. A suggestion was made to place the greenhouse in a corner of the garden, but it was not clear how much sunshine the greenhouse would receive during the winter. The greenhouse requires direct sunlight in the winter months, so a suitable location must be far from tall fences or neighboring buildings. The sun’s angle in the winter sky was an important detail to consider when locating the greenhouse. Areas receiving sun in the summer or fall months may not be illuminated in the winter due to neighboring buildings. To address these questions, a sun study was performed to determine the shadows cast by neighboring buildings in the winter months. The results of this study showed that the greenhouse would be in the winter shade if it were located in the back corner of the garden, because of the adjacent buildings and fences. It was also questioned if the greenhouse itself would cast shade on any plants behind the structure. However, this issue is not a serious concern, because the greenhouse is constructed with transparent polycarbonate panels that are 80% transmissive, which means that 64% of incident light can pass through two walls to the plants behind the structure. The final site was chosen as far from southern buildings as possible, and in a position with trees behind so that it would not cast shade on small plants.

Another concern raised was the potential effects of a non-natural structure on pollinating insects. This is a very important issue, because pollinating insects are critical to the natural cycles of a plant ecosystem.  We were fortunate that our grant coordinator from Citizens Committee had firsthand knowledge about pollinating insects in urban environments, and she informed us that pollinating insects navigate by sunlight, shade patterns, and color. The transparent panels are expected to have minimal effect on their natural pollinating courses in the warmer months.

Finally, since a greenhouse creates an ideal environment for the growth of plants, it is also conducive to the growth of fungi, pests, and plant pathogens. The interior of the greenhouse remains constantly moist and stays warm. Without electrical fans, the air is stagnant and promotes fungal and bacterial growth.  A modern technology solution to this problem is temperature activated vents that mitigate the problem of overheating and can provide air current channels through the structure. These automatic vents do not require electricity and are passively operated by temperature-sensitive wax-filled pistons attached to the windows.  It is also necessary to remove any dead plant material as soon as possible to minimize fungal growth. In addition, there are several organic essential oils such as neem, cedar, and citrus that are being tried as fungal deterrents. It is important to address this issue because a disease or pest that grows in the greenhouse might spread into the farm. The community farm is crowded, just like the rest of the city, so plant or airborne diseases and pests can spread quickly. It is critical that the greenhouse be operated with the best scientific practices possible to ensure the well-being of the rest of the communal farm space.

There were three meetings of the general membership, each lasting an hour, to discuss the greenhouse. The garden organization has chosen to operate with a loose interpretation of Robert’s Rules of Order. At the second meeting of discussions, a motion was made to implement the greenhouse.  Among the 26 members present, the votes cast were 13 ayes, 10 nays, and 3 abstentions.  According to our implementation of Robert’s Rules, any decision is based on the majority of voters present and not on a simple majority of votes. Consequently, the motion did not pass because 14 aye votes were requited for a majority of voters present (abstention votes act as a nay when a majority is defined in this way). The close count of the vote prompted advocates of the greenhouse to propose a revised plan that was scaled down in size as a concession to the opposition concerned with land usage. A new motion was presented the following month and the votes cast were 17 aye and 10 nay with no abstentions. This vote passed the motion so that the greenhouse project could be implemented.

Splitting a community is problematic, both emotionally and politically. Most projects in these types of organizations are of smaller scale with smaller impact, and they move forward with near unanimous support. Overall, the fundamental challenge is to separate the science-based concerns versus emotional concerns and address each appropriately. Emotional resistance can sometimes be overcome by providing a scientific explanation. In other cases, science-based criticisms can lead to very constructive discussions; we can use science to support our ideas but must acknowledge that science can also oppose them. For example, some who were opposed to the project identified specific plant pathogens and microclimate issues that occur in a greenhouse, and this was one of the most important issues to address.  Also, the concern to minimize the visual impact while maximizing sunlight exposure led us to a very informative sun study of our garden. This respect for science and rational discussion is critical in our current society, and forward progress can be made by focusing on tangible and rational methods.

Future Plans

All the work described above generated an 8-ft square greenhouse. The future work requires designing the interior space to be most space efficient and to the liking of the members. Initial ideas are to run multiple levels of shelving around the walls to maintain the maximum possible floor space for mobility. However, plants along the south-facing wall will block the sun, and so the density of shelves and plants on the south wall should be carefully considered. An irrigation system is being planned that will take roof runoff into gutters that feed directly into drip irrigation for plants in the greenhouse. The greenhouse will require regular maintenance throughout the year to keep plants watered and to deter infections. Other programs in the garden have been successful in sustaining a group of dedicated workers and a publicly available sign-up schedule, and we hope to replicate the successful model already in place in our garden. Also in progress is a process to plan and coordinate volunteer work. We intend to use the space for projects, instead of allocating space to individual members.as is the case in the rest of the garden.  We hope that this will be a more equitable method of sharing the space.

Conclusions

An 8-ft square polycarbonate greenhouse was constructed in a community garden in Brooklyn, NY. This process was completely developed and executed by community volunteers. We have detailed the democratic discussions and scientific arguments needed to move forward through a system of community democracy to achieve success. We found that discussions among a large group of emotionally invested community members can be navigated by applying specific scientific principles in a democratic and objective manner. We hope that this project report can be of use to other community groups looking to undertake complex projects in a diverse community.

Acknowledgements

The author wishes to thank Citizens Committee for New York City for the generous grant and the entire garden membership of Prospect Heights Community Farm for working through this complex project to a successful completion.

About the Author

Jeff Secor

Jeff Secor has been a resident of Brooklyn for 10 years and a member of PHCF for nine of those years. He was a freelance gardener around Brooklyn during his graduate studies at the City College of New York. He holds a Ph.D. in physics from CUNY with a specialty in spectroscopy, photosynthesis, and carbon quantum dots. He currently teaches physics at a private school in New York City and teaches workshops on winter gardening structures such as cold frames and greenhouses.

References

Department of Buildings, New York City. Building Code, Loads, Title 27, Subchapter 9.

Design Trust for Public Space (2014). Five Borough Farm II: Growing the Benefits of Urban Agriculture in New York City.

Rules of the City of New York. Noncommercial Greenhouses Accessory to Residential Uses as a Permitted Obstruction in Required Rear Yards or Rear Yard Equivalents, Chapter 23-0.

Appendix

Construction Details for the Greenhouse

The materials for constructing the greenhouse are listed in Table 1. The greenhouse framing material was chosen to be cedar wood since it is an excellent exterior wood for greenhouse framing. It lasts through years of weather exposure and acts as its own insect repellent. Cedar wood is also locally available and within the budget of the greenhouse. The transparent covering is made of 6 mm-thick twin wall polycarbonate (PC) greenhouse panels. PC greenhouse panels are a relatively new material. The insulating R value of 1.54 for polycarbonate compares very well to the R value of 1.72 for a ¼-in. spaced double pane window. It is lightweight (a few pounds per 4 ft ×8 ft panel) and has no risk of breaking into sharp pieces as glass could. It should be noted that the PC panels have a slight blurring effect and are not as visually clear as glass. The PC panels are specified to pass 80% of the sun spectrum that is useful for photosynthesis (400–700 nm).

Local building codes were consulted to ensure compliance with applicable laws. The building codes in NYC are available online through the Department of Buildings. In NYC, this type of greenhouse would be considered a noncommercial greenhouse (Rules of the City of New York). This ordinance requires that the greenhouse be more 3 ft from the lot line. The roof was designed to conform to roof load specifications of 30 lb per square foot of horizontal extent (Department of Buildings, New York City). In general, the square foot of horizontal extent is 1 square foot multiplied by the cosine of the roof pitch. Finally, the PC manufacturer’s specifications determined the required roof framing spacing to support the necessary roof load and resulted in roof purlins spaced 24 in. apart.

The greenhouse will be a warm and moist space in the winter, and the surrounding urban environment contains rodents. Galvanized wire mesh should be placed on the subground as a barrier to prevent rodents burrowing into the greenhouse. During the summer the greenhouse can easily rise above 100 °F. The windows for the greenhouse are fitted with automatic wax hinges which actuate according to the interior temperature to prevent excessive heating and promote air circulation in the warmer months. Two vents are placed on the roof panels, and one vent is placed closer to the ground to achieve a chimney effect.

The greenhouse construction was completed in three phases: (a) site preparation, (b) framing construction, and (c) installation of the PC panels. Site preparation is the most physically intensive phase. The existing plants and garden soil were removed in order to level the foundation soil and to make room for the 6 in. x 6 in. foundation timbers. The area was compacted with a 10-in. hand tamper. We chose not to pour a concrete foundation in order to minimize the impact on the natural area and to minimize the eventual work of removing the greenhouse. Once the timbers were leveled in an 8 ft x 8 ft square arrangement, they were bolted together in the corners with 10-in. galvanized lag bolts, and each timber was anchored in place with two rebar “L” shapes inserted 3 ft below ground level. This part of the project took approximately three days over two weekends.

Figure 4. Anna, Traci, Greg, Melissa, and Josh inside the greenhouse frame, working together on the details of the roof framing.

The second phase was constructing the framing. The wall panels were built first using 3-in. coated decking screws. A group of a dozen members, including a 12-year-old boy, assembled the wall panels, thereby gaining first-hand experience with framing squares, drill bits, circular saws, and with creating a level work space in a community garden. Afterwards, another group of members templated the roof boards using a speed square and a circular saw. In order to provide additional support, stainless steel rafter ties connect the wall framing to the roof boards. (Stainless steel does not interact with cedar wood.) The frame was attached to the foundation using 4½-inch stainless steel screws and washers. The entirety of the framing work required five days over three weekends.

Figure 5. Completed greenhouse with polycarbonate panels. The Spiraea bush in the forefront will grow many times in size.

Finally, the double walled PC panels were installed. The PC panels can be cut by an electric circular saw.  A saw blade with fine teeth must be used when cutting the PC to prevent plastic shrapnel and rough edges. The tops of the PC were sealed with metal foil tape to prevent water from entering the channels. The PC panels were attached directly to the cedar framing using 1 ½- in. dip coated screws with 1-in. neoprene washers. The neoprene washers are common applications where a soft washer is needed in order to prevent cracks and punctures in the panels. It is important not to use galvanized screws as they will cause rust bleeding with the cedar. The framing geometry is made so that all of the panels end on a cedar framing stud. This makes for a more stable structure and also reduces thermal leakage. A door was cut from one of the wall panels and hung on zinc plated hinges. The hinges were installed on the outside of the panel, not in contact with the framing, so there is no danger of galvanic interaction between zinc and cedar.

 

Download (PDF, 2.84MB)

A Multitier Approach to Integrating STEM Education into a Local Elementary School

Abstract

The targeting of elementary school students early in their education with exposure to the different Science, Technology, Engineering and Mathematics (STEM) fields will provide them future access to college offerings and career possibilities. Faculty and students from New York City College of Technology worked with young students at a local elementary school, creating and implementing programs that will help to strengthen the nation’s STEM workforce and to prepare students to be productive citizens with a strong sense of self.

Introduction

The New York City College of Technology (informally known as “City Tech”) partnership with P.S. 307 Daniel Hale Williams School began in 2014. The partnership aimed to promote A Better Educated City; an investment in STEM, and our nation’s future.  New York City College of Technology is part of the City University of New York (CUNY) system. Daniel Hale Williams is an elementary school serving students in Pre-K through Grade 5, which became a science and technology-themed magnet school for STEM Studies after being a recipient of a grant from the federal Magnet Schools Assistance Program. For the 2017-2018 academic year, 373 students are enrolled at Daniel Hale, where 57% are male students and 43% female students.  The race/ethnicity reported by the school includes a 56% Black and 27% Hispanic student population. With a similar male to female ratio of undergraduate students, City Tech reports 30% Black and 33% Hispanic (New York City College of Technology 2017).  The large underrepresented population at both schools made the partnership an ideal fit.  Initially, college students were hired as interns through the CUNY Service Corps program. The CUNY Service Corps organizes students and faculty across the institution to work on projects that benefit the residents and communities of New York City.  These projects aim to advance the “civic, economic and environmental sustainability” of the city (City University of New York [CUNY] 2018). At the core of the Service Corps, launched in 2013 as a response to Hurricane Sandy, is civic-engagement, which aligns with the values of SENCER. Students are paid as interns to work in civic-related jobs in community organizations (CUNY 2018). During the 2014–2015 academic year, two CUNY students worked to develop and implement an Educational Outreach Program that provided students in grades 1–5 with exposure to Science, Technology, Engineering, and Mathematics (STEM) in their elementary school classrooms. To sustain the program beyond the 2014–2015 academic year, the Black Male Initiative, Emerging Scholars, and Perkins Peer Advisement programs at City Tech continued to support the outreach project. Since the program’s inception, a number of City Tech undergraduate students have served as mentors to the elementary school students and have worked with faculty at City Tech and key staff at the local elementary school. The goal of this collaboration, which has spanned a number of years, was to engage college students, elementary school students, college faculty, elementary teachers, and the families of the elementary students in a STEM outreach initiative.

Why is it important to integrate STEM education into the elementary school curriculum?

Many recent studies indicate that the gap in the STEM workforce will continue to widen unless more students decide to enter the STEM fields (Brophy et al. 2008; Brown 2012; Johnson 2013). According to the U.S. Department of Commerce, STEM occupations are growing at 17%, while others are growing at 9.8% (Langdon et al. 2011). To succeed in society today, we should encourage students to solve problems, develop their capabilities in STEM, and become tomorrow’s scientists, inventors, and leaders (Science Pioneers 2017).  Exposure to STEM careers at the elementary school level enhances student learning, encourages creativity, and entices curiosity. The National Academy of Engineering and the National Research Council list some benefits of incorporating engineering in K–12 schools: improved achievement in mathematics and science, increased awareness of engineering, understanding and being able to do engineering design, and increased technological literacy (Katehi, Pearson, & Feder 2009). With these studies as a rationale, we developed a multitier approach to integrate STEM into a Pre-K–5 (elementary) school.

Methods 

The awareness of STEM-related careers was presented to the participating staff, students and families through in-class lesson plans, afterschool programs, and family workshops. Most of the projects centered on science and civil engineering to draw from the strength of the faculty involved.  The engineering design process was included in the activities.  Students were encouraged to (a) identify the problem, (b) brainstorm solutions, (c) try a design, (d) test, (e) identify strengths and weaknesses, and (f) try again.  In order to promote skills associated with a well-rounded scientist and engineer, the activities integrated concepts of cost, schedule, and communication. The majority of the activities (in-class lessons, afterschool program and family workshops) were held at the local elementary school.  College students and faculty met and communicated regularly with the staff at the elementary school to plan all activities.  We present below the project design of this multitier approach to the community.

In-class Lessons

The in-class lessons centered on the NYC Scope and Sequence for Science and the Next Generation Science Standards (NGSS).  The science focus included the following two topics: The Five Dancing Spheres (biosphere, lithosphere, geosphere, cryosphere, and hydrosphere) and Weathering and Erosion. In each unit, students in grades 3 and 4 explored these science fields and created models to represent and display their learning.  The civil engineering focus included the following in-class lesson topics: What is Engineering, Types of Engineering, Structures and Functions, Teams behind Construction, Construction Drawings, and Sustainability.  The goal of the in-class lessons was to enhance the existing science curriculum with real-world applications and hands-on projects to help the students better understand the science curriculum. The commitment and participation of teachers from the elementary school were critical to the success of the program.  The teachers and undergraduate students met regularly to plan, reflect, and ensure a smooth link between the NGSS curriculum and the in-class lesson topics.  The teachers provided insight on teaching techniques for elementary school-age children and diverse learning styles.  The undergraduate students worked closely with the teachers and tailored their lessons and activities to the children in the classroom.

The lesson plans for The Five Dancing Spheres curriculum (Figures 1 and 2) at the elementary school is only one example of the approach that we implemented.  Each lesson included a visual aspect (examples), vocabulary activity, homework, and a hands-on activity.

 

Afterschool Programs

The afterschool programs reflected the model used in two local design competitions: West Point Bridge Design and Future City. These competitions are aimed at middle school students to promote interest in civil engineering careers.  These projects required students to model the Engineering Design Process. Students used software programs to design their projects, create physical models, and prepare oral presentations.  Even though students did not participate in the competitions, they were encouraged to be problem solvers and engineers.  Students were encouraged to design, test, and revise their ideas. This provided a great opportunity for students to use their math, science, and technology skills while working with the engineering design process to come up with various solutions.

Engineering concepts such as force and equilibrium were incorporated through the Bridge Design project.  Students used the Bridge Design software to design their bridges and simulate the testing of the bridge. Bridge Designer is a zero-cost educational software intended to provide middle school and high school students with a real-world overview of engineering through the design of a steel highway bridge (Ressler 2013).

These elementary students were introduced to concepts of tensile and compressive force.  Students created a virtual bridge and a
replica model of their virtual bridge using  balsa wood (Figure 3). Each material had a cost assigned to it, and students worked to make the strongest and most affordable bridge.

Similarly, concepts such as city planning and sustainable design were taught through the city design project. Future City is a project-based learning program where students in 6th, 7th, and 8th grade imagine, research, design, and build cities of the future (National Engineers Week Future City Competition 2017). Our afterschool partnership brought this project to the elementary students at P.S. 307, and they successfully created their own virtual city using the Sim City software.  Students made blueprints of their cities and created a replica model showing a block of their cities using all recyclable materials. In preparing a blueprint, students visualize and sketch their design. Transferring the design from paper to three dimensions helped the students make a connection from 2-D to 3-D, promoting spatial thinking.  Spatial thinking has been identified as an important trait for STEM careers (Wai, Lubinski, & Benbow 2009).  “Fostering spatial thinking and mathematics learning in elementary school could contribute to a downstream ripple effect, improving students’ interest and success in STEM subjects throughout their education and into their careers” (Burte et al. 2017).

The process of calculating total cost introduced the idea of budgets and the importance of adhering to a budget.   Students also had to adhere to a schedule, as they were limited in the amount of time they could work on each portion of the project. Students presented their projects at the end of each program.

Family STEM Workshops

Recognizing the importance of family involvement in a child’s success, the program included interactive STEM workshops and field trips for families that increased their awareness of STEM-related careers. Survey and program assessment data informed planning for the next project year.  Topics in the family STEM workshops included, but were not limited to Civil Engineering, Chemistry, Mechanical Engineering, Architectural Engineering, and Computer Systems Technology.  One local field trip included the SONY Wonder Technology Lab in New York City.

Some of the activities that were introduced at the workshops were (a) Spooky Materials Testing experiment which included a Mechanical Engineering focus; (b) building a home for turkeys with a Civil Engineering focus; (c) dissolving M&Ms and making slime with Chemistry; (d) learning coding with puzzles with a Computer Engineering focus; and (e) the design and creation of an architectural building model with Architectural Engineering as the focus.

The Spooky Materials Testing experiment (Schooling a Monkey 2018) introduced stress concepts to the elementary students by applying the different types of stresses (tensile, compressive, shear) to different types of candy and comparing the results of the tests on each candy. Students then made connections as to which type of candy, based on the stress concept, would be best for building.

Building a home for a turkey (Preschool STEAM n.d.) introduced the structural concepts and material cost to the students. The goal was to contain the holiday turkeys in a structurally sound and cost-efficient space. There were time limits and cost constraints that the students had to comply with. Students were also given a range of materials, each with a certain cost assigned.

Dissolving M&Ms (American Chemical Society 2018) and making slime (STEAM Powered Family 2018) introduced the concept of chemical experimentation and observation. In both activities, students were able to combine substances and observe the outcomes, which were colorful, fun, and thought provoking. With the help of parents, the students poured rubbing alcohol, water, and oil onto a plate of M&Ms and saw the dissolving effects the different solutions had on the M&Ms.  The slime-making activity reinforced the concept of how observations are important in chemical processes.

Learning coding with puzzles introduced the algorithmic concept of coding patterns to the students (Institute of Electrical and Electronics Engineers 2018). This was accomplished through a brief introduction of how to follow steps using “coding language” and a visual puzzle activity that involved critical thinking. The students were then encouraged to “walk out” their coded steps on a large grid that closely followed the worksheet they worked on. As a next step, students and their families applied the skills they had learned to the online software in code.org.

By designing and creating an architectural building model, students were able to see the problem-solving and aesthetic skills it takes to become an architect. Students were given a laser-cut bendable paper set to create 3D models of their structure. Each student received the same pieces, but each individual was able to create entirely different structures by arranging the structure to their liking.

Results and Discussion

The faculty at New York City College of Technology recruited undergraduate students enrolled in the departments of Biological Sciences, Chemistry, and Civil Engineering Technology to serve as mentors, which included a pool of about 750 students. Throughout the years, several programs have provided support to the college students involved in this endeavor.  These included the CUNY Service Corps, Emerging Scholars, Perkins Peer Advisement, and the Black Male Initiative programs, all of which have recognized the value of the STEM Outreach program. The success of the partnership and the collaboration of college faculty and students at City Tech has opened the eyes, minds, and future career potential of the elementary students at P.S. 307 Daniel Hale Williams School. It reinforced the need for STEM education in underrepresented learners. The partnership has increased exposure at the elementary school to STEM topics and courses taught at the college level.  The outcomes as shown have been favorable and shared with the community at large via showcase presentations, school displays, and conference presentations, and at the college’s annual poster session.

Success(es)

Our success included presenting activities seen as academically challenging (geared only to junior high, high school, or college students) to the elementary school students at P.S. 307, in a way that led to both success and enjoyment for the students. Furthermore, these students were able to figure out what STEM topics they enjoyed by trying many different discipline-oriented workshops. By including the parents in our workshops, we were able to inform them about various fields of engineering, next step school options for their elementary child, and career opportunities.  Elementary school students were able to successfully implement the information they were learning through interactive hands-on STEM activities.

Impact on Undergraduate Students

There is a large body of evidence of the positive impact of undergraduate research on college students (Lopatto 2010; Russell, Hancock, & McCullough 2007).  George Kuh (2008) also points to high-impact practices such as engagement beyond classroom (internships) and community-based learning that promote student engagement.  The STEM outreach that we have described demonstrates that working with community partners such as the elementary school represents a valuable community-based project.  The CUNY Service Corps indicate that undergraduates gain “workplace skills and abilities; personal development; civic engagement and social issues awareness” (CUNY 2017).  The undergraduate students developed the curriculum under the guidance of the faculty and elementary school teachers.  Additionally, the students gained valuable experience for the real world, including organization and communication and presentation skills.

Conclusion

This work brings to the forefront a collaboration that engaged faculty, undergraduates and elementary school students and teachers in a STEM outreach project.  The project, which aimed to promote A Better Educated City, has increased awareness of STEM careers among families at the elementary school. Students were engaged in hands-on activities while learning elementary concepts related to STEM. Exposing elementary school students to science and engineering concepts can motivate them to solve various problems more effectively. “Quality STEM education is vital for the future success of students. Integrated STEM education is one way to make learning more connected and relevant for students” (Stohlmann, Moore, & Roehrig 2012, 28). Engineering is traditionally not a subject that is taught in elementary schools. However, it is a powerful method of teaching and motivating students in STEM-related fields. “Research indicates that using an interdisciplinary or integrated curriculum provides opportunities for more relevant, less fragmented, and more stimulating experiences for learners” (Furner & Kumar 2007, 186).  Adding science, and more importantly, engineering as a part of the elementary school curriculum can be an effective way for students to strengthen their science, mathematics, and technological skills.

Acknowledgements

Professors Samaroo and Villatoro thank the following programs for supporting the various undergraduate students involved in this project over the years: Perkins Peer Advisement, Black Male Initiative and Emerging Scholars programs at New York City College of Technology, and the CUNY Service Corps.  The authors thank the principals and teachers at Daniel Hale Williams School for opening their classrooms to this project throughout the years. We also acknowledge the faculty from the City Tech who participated in the Family STEM Workshops and the following undergraduates who have contributed to this project: Ramon Romero, Ngima Sherpa, Joyce Tam, Abigail Doris, Dante Francis and Jesam Usani.

About the Authors

Areeba Iqbal

Areeba Iqbal earned her Associate in Applied Science in Civil Engineering from New York City College of Technology.  She is currently pursuing a Bachelor of Science in Civil Engineering from
Manhattan College.

 

 

 

 

Kayla Natal

Kayla Natal is currently a student at New York City College of Technology, pursuing a Bachelor’s degree in Mechanical Engineering.  She also works as a Coordinator for the Peer Advisement Program. Kayla hopes to further her education and pursue a career in Industrial Design.

 

 

 

 

Servena Narine

Servena Narine is a licensed and certified NYC Board of Education teacher. She currently works at Daniel Hale Williams Public School 307 Magnet School for STEM Studies. She has been an educator at P.S. 307 for 22 years. Over the course of her career, she has served as a classroom teacher (Grades Pre-K, 1, 2 and 3), mathematics coach, technology teacher, magnet resource specialist, and mentor. No matter the position, role or duties, she enjoys each, in addition to working with staff, students, parents, and partnerships. She brings to her work a focused and organized structure which has benefited her and the school over the years.

 

 

Melanie Villatoro

Melanie Villatoro is an assistant professor in the Department of Construction Management and Civil Engineering Technology.  She teaches a variety of courses in the civil engineering major including statics, strength of materials, concrete, steel, soil mechanics, and foundations.  Prof. Villatoro’s approach to teaching builds on developing rapport with her students.  She is highly effective in the classroom and as an advisor and mentor.  She is passionate about student retention and performance, as well as STEM Outreach from the elementary to the high school level.

 

 

Diana Samaroo

Diana Samaroo is an associate professor and chair of Chemistry Department at New York City College of Technology in Brooklyn, New York.   Her pedagogical research is in the area of peer-led team learning in Chemistry and integrating research into the curriculum.  With a background in biochemistry, her research interests are in the area of drug discovery, therapeutics, and nanomaterials. She has successfully mentored students through the Louis Stokes Alliance for Minority Participation and the Black Male Initiative and serves on the college’s Undergraduate Research Committee.

References

American Chemical Society. (2018). Dissolving M&Ms. Retrieved February 5, 2018 from https://www.acs.org/content/acs/en/education/whatischemistry/adventures-in-chemistry/experiments/dissolving-m-ms.html.

Brophy, S., Klein, S., Portsmore, M., & Rogers, C. (2008). Advancing engineering education in P-12 classrooms. Journal of Engineering Education, 97(3), 369–387.

Brown, J. (2012). The current status of STEM education research. Journal of STEM Education: Innovations & Research, 13(5), 7–11. Available from Academic Search Complete, Ipswich, MA. Accessed October 9, 2017.

Burte, H., Gardony, ,Hutton, , & Taylor, . (2017). Think3d!: Improving mathematics learning through embodied spatial training. Cognitive Research: Principles and Implications2(13), 1–18.

City University of New York. (2018). CUNY Service Corps. Retrieved February 5, 2018 from  http://www1.cuny.edu/sites/servicecorps/.

Furner, M. J., & Kumar, . (2007). The mathematics and science integration argument: A stand for teacher education. Eurasia Journal of Mathematics, Science & Technology Education, 3(3), 185–189.

Institute of Electrical and Electronics Engineers. (2018) Try Engineering. Retrieved February 7, 2018 from http://tryengineering.org.

Johnson, C. C. 2013. Conceptualizing integrated STEM education. School Science and Mathematics, 113(8), 367–368.

Katehi, L., Pearson, G., & Feder, M. (2009). The status and nature of K-12 engineering education in the United States.  The Bridge on K-12 Engineering Education, 39(3). Retrieved February 5, 2018 from https://www.nae.edu/19582/Bridge/16145/16161.aspx.

Kuh, G. D. (2008). High-impact educational practices: What they are, who has access to them, and why they matter. Washington, DC: Association of American Colleges and Universities.

Langdon, D., McKittrick, G., Beede, D., Khan, B, & Doms, M.  (2011). STEM: Good jobs now and for the future.  U.S. Department of Commerce, Economics and Statistics Administration. Retrieved February 7, 2018 from http://www.esa.doc.gov/sites/default/files/stemfinalyjuly14_1.pdf.

Lopatto, D. (2010). Undergraduate research as a high-impact student experience. Peer Review 12(2). Retrieved February 7, 2018 from https://www.aacu.org/peerreview/2010/spring.

National Engineers Week Future City Competition. (2017). Future City Competition. Retrieved February 5, 2018 from https://futurecity.org.

New York City College of Technology, City University of New York. (2017). Fact Sheet 2017–2018. Retrieved February 5, 2018 from http://www.citytech.cuny.edu/about-us/docs/facts.pdf.

Preschool STEAM. (n.d.). Easy turkey preschool STEM activities. Retrieved February 7, 2018 from https://preschoolsteam.com/thanksgiving-preschool-stem-activities/.

Ressler, Stephen. (2013). The Bridge Designer Software. Retrieved February 7, 2018 from http://stephenjressler.com/wpbd/.

Russell S. H., Hancock , & McCullough, J. (2007). The pipeline. Benefits of undergraduate research experiences. Science, 316(5824), 548–549.

Schooling a Monkey. (2018). Hands-on teaching ideas. Retrieved February 7, 2018 from http://www.schoolingamonkey.com/engineering-activities-for-kids/.

Stohlmann, M., Moore, T. J., & Roehrig, G. H. (2012). Considerations for teaching integrated stem education. Journal of Pre-College Engineering Education Research (J-PEER), 2(1), 28–34.

STEAM Powered Family. (2018). Slime STEM Activities – Learning with slime, STEM and fun! Retrieved February 7, 2018 from https://www.steampoweredfamily.com/activities/slime-stem-activities-learning-with-slime-stem-and-fun/.

Science Pioneers. (2017). Why STEM education is important for everyone. http://www.sciencepioneers.org/parents/why-stem-is-important-to-everyone.

Ressler, Stephen. (2013). The Bridge Designer Software. Retrieved February 7, 2018 from http://stephenjressler.com/wpbd/.

Wai, J., Lubinski, D. & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817–835.

 

Download (PDF, 4.97MB)

 

Cultivating STEM Identity and Belonging through Civic Engagement: Increasing Student Success (Self-efficacy and Persistence) for the Two-Year College STEM Student

Abstract

Retention efforts in STEM have become a priority of colleges and universities. Two-year college STEM students are particularly affected by factors that contribute to low retention and persistence. To address STEM retention problems, a student support program was developed through National Science Foundation funding to support STEM student success. The program sought to enhance STEM identity, thereby increasing persistence. Participants were required to engage in STEM civic engagement, using their STEM knowledge and skills for community betterment. This study sought to examine the effects of these activities on students’ STEM identity and ultimate persistence. Data were collected over years from participant surveys and interviews. We found that students had cultivated a sense of STEM identity, and that graduation and transfer rates increased as a result of their increased civic engagement. Students who engage in their community develop cultural competency, communication skills, and critical thinking ability and have opportunities to apply their knowledge.

Introduction

The Role of Two- year Colleges in STEM Education

Two-year colleges are an often overlooked but essential component in the pathway to Science, Technology, Engineering, and Mathematics (STEM) higher education (National Academies of Sciences, Engineering, and Medicine [NASEM] 2016; National Research Council [NRC] 2012).  They play a unique role in STEM education, enrolling nearly half of the nation’s undergraduate students (American Association of Community Colleges [AACC] 2014). Community colleges in the United States enroll more than eight million students annually, including 43% of U.S. undergraduates (AACC 2011; Mullin 2012). Approximately 50% of all college students who eventually earn bachelor’s degrees in STEM begin their undergraduate education at two-year colleges (Tsapogas 2004; Starobin & Laanan 2010), and 20% of students who were awarded science and engineering doctoral degrees earned credits at a two-year college at some point in their academic careers (Chen 2013).

Community colleges provide a diverse student body (people of color, women, older students, veterans, international students, first-generation college students, low-income students, and working parents) with access to higher education. According to the American Association of Community Colleges, 52% percent of Hispanic students, 44% of African American students, 55% of Native American students, and 45% of Asian-Pacific Islander students attend two-year colleges (AACC 2011). Additional reports (Provasnik & Planty 2008) show the median age of two-year college students is 24, with 35% of the student population 30 or older. Further data show that 20% of two-year college students are married with children, and an additional 15% are single parents (Provasnik & Planty 2008; Li 2007). Almost half of college-going students attend community colleges at some point in their academic careers; low-income, first generation, and under-represented minority students are more likely to enroll in two-year institutions (NASEM 2016).

Two-year colleges attract many students by providing affordable tuition, flexible scheduling, small class sizes, and access to faculty. These institutional attributes accommodate those two-year college students who take a nonlinear path to degree completion due to family and work obligations (Pérez & Ceja 2009). On account of the rich diversity of their student population, two-year colleges have the potential to increase participation of non-traditional and underrepresented students in STEM.

Retention and Persistence for Community College STEM Students

Retention and persistence of all STEM students continue to be of significant concern as data reveal that more than half of freshman who initially declare STEM majors leave these fields before graduation (President’s Council of Advisors for Science and Technology [PCAST] 2012; Chen 2009; Chen 2013). Among all students who declared their intentions to pursue STEM majors, only 43% were still in a STEM major at the time of their last enrollment, with the others all transitioning to other majors. Even more problematic, only 7.3% of STEM students who began at a two-year college received a STEM bachelor’s degree after six years, compared with 45% of students who started in a four-year program (Chen 2013).

Factors influencing retention and persistence in STEM majors are diverse and often interconnected. Leading reasons for low STEM retention and persistence at both the two-year and four-year colleges are uninspiring introductory courses, lack of math preparation, and an academic culture not welcoming of women, minorities, and non-traditional students (PCAST 2012; Seymour and Hewett 2000; Griffith 2010; Huang, Taddese, & Walter 2000). Additionally, STEM students at the two-year college are affected by external circumstances such as work and family obligations and have fewer economic and social resources and fewer STEM role models than their four-year traditional student counterparts.  For the two-year college STEM student, these external circumstances coupled with an unwelcoming STEM culture undermine their sense of identity, belonging, and self-efficacy, which are critical to their STEM retention and persistence.

The Culture of STEM

The explicit and implicit customs, behaviors, and values that are normative within STEM education make up the culture of STEM (NRC 2009). An examination of the culture of STEM education is important because the social, psychological, and structural dimensions of STEM education in two-year and four-year colleges influence student identity, belonging, self-efficacy, and encouragement. The experiences students gather during their interactions with the “STEM culture” of the department or institution drive student awareness and understanding of program standards, academic expectations, STEM identity, and their sense of belonging in the program. More importantly, student experiences within the STEM culture and the encouragement or lack thereof can have a profound impact on the student’s self-efficacy and desire to persist (Cabrera et al. 1999; Eccles, Wigfield, & Schiefele 1998; Reid & Radhakrishnan 2003; Pérez, Cromley, & Kaplan 2014).

Identity/Belongingness, Encouragement, and Self-efficacy

Self-perceptions regarding academic competence are framed by personal and collective identities. Each student has many such identities—racial, ethnic, socioeconomic, professional, sexual/gender, and family. These identities are framed by upbringing, experiences, and society at large and can shift across time either unconsciously or through deliberate effort (Good 2012). Students’ positive identification with their discipline can enhance academic engagement and belongingness and prove to be a great source of encouragement. However, more commonly the obverse is true, especially for non-traditional and underrepresented STEM students. These students often experience challenges such as isolation, invisibility, discrimination, and a sense of not belonging and disconnectedness from external social and cultural networks (Ong 2001; NRC 2012).

Belonging to valued social groups is a fundamental human need; a sense of inclusion is particularly important for underrepresented groups in STEM when stereotypes imply that they might be unsuited to certain settings, such as rigorous academic classes (Baumeister & Leary 1995; Dovidio, Major, & Crocker 2000; Walton & Cohen 2007; Cohen & Steele 2002). Feeling a sense of belonging and acceptance by others in STEM (faculty and peers) is crucial to retention and persistence for these STEM students (Johnson 2012; Palmer, Maramba, & Dancy 2011).

Stereotypical ideas about what constitute appropriate fields of study for two-year college students or comments regarding academic preparedness/achievement in math and science can serve as critical barriers to retention and persistence. According to Starobin & Laanan (2008), even when these students possess a strong math or science background, they often receive little encouragement or support from faculty. Creating a sense of encouragement and a support system for two-year college STEM students is paramount to increasing retention and persistence. Studies show non-traditional and underrepresented minorities need proactive personal encouragement and positive media messages to counteract the status quo “culture of STEM” (Hanover Research, 2014). Programs and activities that facilitate healthy positive relationships and offer encouragement among peers and from faculty promote student engagement and feelings of belonging.

Academic self-efficacy is commonly defined as the belief in one’s capabilities to achieve a goal or an outcome using one’s skills under certain circumstances, and that performance and motivation are determined by how effective people believe they can be. (Snyder & Lopez 2007; Bandura 1982). More specifically, for many two-year STEM students, academic self-efficacy is entangled with STEM identity as it refers to the belief or conviction that they can successfully obtain a STEM degree (Marra et al. 2009).

A major source of academic self-efficacy is simply having the raw knowledge, skills, and experience required to successfully reach a goal or to complete a task; this source of efficacy is commonly referred to as mastery experience (Bandura 1997). In the context of two-year STEM students, this means having a positive experience in completing a STEM task, specific course, and/or obtaining an associate’s degree.

STEM Civic Engagement through Peer Tutoring

STEM civic engagement covers a wide array of activities and learning outcomes in which students participate in the formal and informal STEM processes that address community needs and seek to improve the quality of life for individuals, groups, and entire communities. In this context, STEM civic engagement contributes to student growth by connecting authentic and meaningful service to communities with content and skills acquired in the classroom. Civic engagement activities, such as tutoring others in STEM content, present students with opportunities to reflect upon their own academic goals (also known as metacognition) (NRC, 2000), transform their communities, and identify and address social challenges that are specific to our society, i.e. the lack of STEM subject understanding, the lack of STEM role models, etc.

It is well documented that tutoring has beneficial effects on both the tutor and the tutee.  In particular, many studies have shown that tutoring increases the content knowledge as well as the self-concept of the tutor (Britz, Dixon, & McLaughlin1989; Cohen, Kulik, & Kulik 1982; Early 1998).  Students who tutor feel more positive towards themselves as students, and they display an improved academic self-concept. Through this enhanced self-concept, students identify themselves more strongly as students of their discipline (Early 1998).  Furthermore, students in STEM disciplines who serve as leaders among their peers experience increased self-efficacy and retention, and studies have shown that this trend applies to both majority and underrepresented students.  Thus, peer leadership may provide a path for improving retention of underrepresented groups in the field (Hug, Thiry, & Tedford 2011). Additional outcomes for STEM leaders (mentors or tutors) include increased participation in internships and higher GPAs (Monte, Sleeman, & Hein 2007). Other studies indicate that the opportunity to tutor or mentor others allows STEM students to develop a sense of belonging and social relationships that aid in student retention; to some extent, this can be attributed to improved experience with and understanding of STEM culture at the students’ institutions (Kiyama 2014; Kiyama et al. 2014).

Existing research provides a limited understanding of the relationship between identity/belonging, encouragement, self-efficacy, civic engagement, and retention rates for two-year college STEM students. Our study explored the effects of civic engagement volunteer activities on student identity/belonging, encouragement, and self-efficacy.  The results show a relationship between these activities and STEM persistence and retention for two-year college STEM students.

Institution and Program

Perimeter College is part of Georgia State University, a diverse, multi-campus urban research university in metropolitan Atlanta. The college is the major provider of associate’s degrees and student transfer opportunities in Georgia and a gateway to higher education, easing students’ entry into college-level study.  More than 21,000 students, representing all ages and backgrounds, are enrolled in Perimeter College. Through the college, Georgia State serves the largest number of dual enrollment, international, online, transfer, and first-time freshman students in the University System of Georgia.

Beginning in Spring 2012, through National Science Foundation funding, a Science, Technology, Engineering, and Mathematics Talent Expansion Program (STEP) was developed for two-year, full-time students, with a minimum 2.8 grade point average. To participate, students must have U.S. citizenship or status as permanent resident alien or refugee alien and be majoring in a STEM field of study, declared at any point but usually after the first year of coursework. The objectives of the program are two-fold: (a) to increase the number of students who persist in all STEM fields at the institution (chemistry, biology, math, geology, physics, computer science, and engineering) and (b) to increase the number of students who graduate and/or transfer to four-year colleges/universities to complete their STEM baccalaureate degrees.  The demographic breakdown of the STEP participants throughout the lifetime of the program mirrored that of the STEM majors in the institution; the majority of STEP students are underrepresented minorities.

Students participate in the program for an average of three semesters (including a summer semester). Stipends are given to those participants who meet the following criteria each semester: (a) are enrolled as a full-time student (12 credit hours during the fall and spring semester); (b) maintain a cumulative minimum GPA of 2.8 and a minimum semester GPA of 2.5; (c) participate in a minimum of 10 hours of STEM civic engagement activities per semester; (d) participate in a minimum of six STEM–related activities (STEP-sponsored and others). Stipend amounts vary depending on the academic classification of the participant. Additional stipends are given for participation in the Summer Bridge I undergraduate research experience (three weeks), Summer Bridge II undergraduate research experience (eight weeks), and participation in the NSF’s Research Experiences for Undergraduates program. STEP sponsors multiple STEM activities each semester, including STEM industry visits and college visits.

STEM Civic Engagement Activities

Program participants are engaged in the STEM community in a number of ways, some of which are required elements and others that are optional.  All program participants are required to attend a number of career workshops and to visit industry sites and four-year institutions.  Additionally, throughout their tenure in the program, participants are required to complete a minimum of 10 hours of civic engagement per semester.  Many of the students fulfill this requirement by serving as tutors in on-campus student support facilities or off campus in their communities.   Additional civic engagement opportunities are available to the students through outreach activities (such as science festivals), environmental clean-ups, and other STEM-related events. Many students (73%) completed more than the required 10 hours per semester of service; the average contribution per semester is 12 hours of service.

Methods

In order to determine student outcomes, we tracked students through their program experience and after graduation and transfer to four-year institutions. During their tenure in the program, participants were asked to complete a number of surveys and focus group interviews to determine their reactions to and the perceived outcomes of the various student support activities.  Surveys were retrospective in design: students were asked to think back to how they felt at the beginning of the program and compare that to how they felt at the time of taking the survey (usually after one year in the program). This approach maximizes ability to match responses and also eliminates pretest sensitivity and response shift bias, wherein students tend to underestimate or overestimate their attitudes towards the unknown prior to the start of an intervention (Howard 1980; Pratt, McGuigan, & Katzev 2000). In addition to surveys given during students’ tenure in the program, we also administered an alumni survey to those who had completed the program.

In particular, our 23-item student survey drew upon existing instruments designed to assess changes in STEM engagement (Fredricks et al. 2005), STEM identity and belonging, encouragement (Leonowich-Graham & Condley 2010), math and science anxiety (Bai et al. 2009; Glynn and Koballa 2006), commitment to research, and intent to persist (Tocker 2010). Further definition of these psychosocial constructs is presented in Table 1, along with example survey items. Students were asked to respond to survey items using a 5-point Likert scale of agreement (1=Strongly Disagree to 5=Strongly Agree).

To collect qualitative data, students were assembled in groups of 812 to participate in annual focus group interviews.  During these interviews, students were asked probing questions regarding their experiences in the program and how they affected their identity, engagement, and intent to persist in STEM. The focus group interview protocol included questions such as the following:

  • Describe civic engagement activities that you participated in.
  • Did these activities change the way you think about yourself? About your intended career?
  • Are you making different decisions because of participating in this program? Explain.

To further explore the link between persistence and gains made by students as a result of the program and civic engagement activities, a multiple regression analysis was conducted whereby the outcome variable was Intention To Persist and the predictor variables were STEM Engagement, STEM Identity and Belongingness, Math and Science Anxiety, Research, and Encouragement. To compute the outcome and predictor values for this analysis, items from the student survey were averaged for each corresponding construct.

Results

Qualitative data gleaned from participants’ open-ended responses to surveys and during focus group interviews suggested that the STEP program positively impacted their motivation to pursue STEM education and careers by enhancing their sense of STEM identity and belonging and by providing social support and encouragement.

[STEP] helped me to be confident and to trust myself that I can do better things if I have the will. It also helped me make the decision that I belong to a STEM family.

STEP enhanced my vision of being a scientist.

I was about to give up on my school.…[A]fter meeting and getting help from different people, I was able to rethink my major and continue my studies.

Additionally, annual surveys completed by program participants demonstrated that they made significant gains in terms of STEM engagement, STEM identity and belongingness, comfort with math and science, encouragement, and intent to persist.  Table 2 shows statistically significant gains in attitude measured by these surveys over the course of the program.

Figure 1 summarizes the results of the regression analysis, conducted using data from the alumni surveys administered in 2013 and 2015 (n=39). Students taking the alumni survey had all completed their program and/or transferred to a four-year institution. Alumni survey data were chosen for this regression analysis in order to limit the findings to that of a longer-term student perspective; these students had the benefit of looking back over their entire program experience, and these data represent a more complete picture. The regression model with all five predictors explained 95% of the variance in the outcome variable (R2=.948, F(5,33)= 119.18, p<.001).  Controlling for other variables in the model, the results indicate that two variables statistically significantly predict intent to persist:

  • STEM Identity and Belongingness (ß=.55, p<.001)
  • Encouragement (ß=.56, p<.001)

This suggests that students’ motivations to pursue additional STEM education and/or careers is contingent on the degree to which the program was able to (a) improve their sense of belonging in STEM and (b) provide encouragement for attaining a STEM degree. This finding corroborates previous research which indicates that STEM persistence increases as students experience a greater sense of belonging and general social support from mentors and colleagues (London et al. 2011).

Quantitative data analysis was limited in that the response rate for the student surveys was not 100%. (Response rate was roughly 85% across all items and multiple administrations of the survey.)  Thus, responses might demonstrate a bias towards the positive, as students who felt less compelled to respond to the program survey were often those who had left the program (and usually the institution). Additionally, due to the low sample size, we must use caution when interpreting the results of the regression analysis. Correlations among constructs suggest that multicollinearity may have impacted the results of the regression. To mitigate the effects of multicollinearity, each predictor variable in the regression model was standardized (e.g., converted to a z-score). Furthermore, the results provided in the current report are preliminary and should be replicated using a larger sample size. It is also important to note that disaggregation of data by gender or race/ethnicity did not reveal significant differences among the participating groups of students.

Qualitative Findings

During annual interviews, students were asked about their experiences in program activities, and how they thought these experiences affected them. In particular, we explored which facets of the program led to increased STEM identity and encouragement.  Students explained that the volunteer work they did to meet their civic engagement requirements helped them in many ways.  Specifically, they were able to solidify their STEM content knowledge and improve their communication and leadership skills:

Being part of [tutoring]… helps you refresh your mind. When you are helping them it helps you refresh your mind. You refresh communication skills.

It improves your leadership skills. One thing that I’ve learned is that you’re more involved in the community and you’re more exposed to the problems of the community. I think that it really improves your communication skills, your leadership, and it helps you learn more about your community.

Participants also felt that civic engagement motivated them to work harder in STEM and gave them a broader perspective on their futures.

It opens your mind up to all that’s out here. It’s opened my mind to what’s out there and made me think that I want to help people. It’s an unselfish thing.

Even being around the other members, outside of class, you get to know them—being around people that are really smart, makes me want to be really smart.

You become more motivated. You want to learn as much as you can. You want to help as much as you can. You want to put things out there so that people can learn from you.

It’s not about improving myself, but improving other people’s lives. I started thinking about non-profits. I started thinking about things that I didn’t think about before.

In short, students explained that participation in civic engagement improved their STEM and soft skills and motivated them to consider a broader range of career options. Their sense of identity as part of a STEM community was solidified through exchanges with their peers as well as with those they were helping.

In order to examine the effect of programmatic activities on actual persistence, we tracked transfer and graduation rates of the scholars, and compared those to non-participant STEM students. Table 3 indicates that program participants were more than twice as likely to complete their program of study and /or transfer to a four-year institution to pursue a STEM degree. Furthermore, STEP students who completed at least 10 hours per semester of civic engagement activities were even more likely to graduate and/or transfer (Table 3).

Discussion

The culture that students encounter when studying STEM has an effect on their interest, self-concept, sense of connectedness, and persistence in STEM. Students who persist often have to draw upon personal, cultural, and co-curricular resources to counter messages about the nature of ability and stereotypes that they encounter in interactions with faculty and that are embedded in organizational norms and practices.

Interventions aimed at improving participant identity and belonging have been shown to enhance achievement and persistence (Cohen & Garcia 2008). Not surprisingly, students in highly evaluative environments (such as STEM courses) are sensitive to stereotype threat when facing difficult coursework and feedback, suggesting that it is particularly important to focus on improving STEM identity in an effort to increase student success (Cohen & Steele 2002).

Despite limitations of the study discussed in the results section, we found that an increase in STEM identity and belongingness and encouragement predicted an increase in intent to persist, and that actual persistence was improved with civic engagement. We posit that opportunities to guide others through tutoring and other civic engagement activities enhanced STEM identity, as scholars explained to us during interviews.  In concurrence with STEM achievement, improved identity and belongingness in STEM led to a substantially higher likelihood of graduation and or transfer, as evidenced by participant graduation and transfer rates in comparison to those of non-participant STEM students at the institution. Participating students still face a number of challenges, as do their non-participating counterparts; though the overall graduation and transfer rate for participants is still alarmingly low, the trend towards success is encouraging and suggests that interventions aimed at increasing STEM identity through civic engagement will increase overall STEM diversity in academe and the workforce

About the Authors

Dr. Pamela M. Leggett-Robinson

Dr. Pamela M. Leggett-Robinson is the Science Department associate chair and an associate professor of chemistry on the Decatur campus of Georgia State University-Perimeter College. Dr. Leggett-Robinson has served as a program director for several NSF and NIH initiatives and is currently the principal investigator of Georgia State University-Perimeter College’s NSF STEP grant. Her research and scientific presentations focus on natural product chemistry, surface chemistry, and student support programs in STEM education. She holds a BS in Chemistry from Georgia State University, an MS in Bio-Inorganic Chemistry from Tennessee Technological University, and a PhD in Physical Organic Chemistry from Georgia State University. As corresponding author, Dr. Leggett-Robinson can be reached at pleggett1@gsu.edu.

 

Mrs. Naranja Davis

Mrs. Naranja Davis is the NSF GSU-PC STEP coordinator. She has worked as a coordinator on several other NSF STEM initiatives over the past 10 years and is experienced in student data systems. Ms. Davis has a BS in Communication with a minor in Public Relations.

 

 

 

 

Dr. Brandi Villa

Dr. Brandi Villa did her graduate research in areas of applied and environmental microbiology as well as program evaluation of a science education outreach organization. She has been a science educator at middle school, high school, and undergraduate levels for more than a decade and thus brings an educator and researcher’s perspective to the design and implementation of education research and program evaluation. In addition to her passion for all aspects of STEM education, Dr. Villa particularly enjoys challenges related to evaluation design, reporting, and data visualization.

References

American Association of Community Colleges (AACC). (2011). Fast facts, 2011. Washington, DC: American Association of Community Colleges.

American Association of Community Colleges (AACC). (2014). Fact Sheet. Washington, DC: American Association of Community Colleges.

Bai, H., Wang, L., Pan, W., & Frey, M. (2009). Measuring mathematics anxiety:  Psychometric analysis of a bi-dimensional affective scale. Journal of Instructional Psychology, 36(3), 185–193.

Bandura, A. (1997). Self-efficacy: The exercise of control. New York: W.H. Freeman and Company.

Baumeister, R. F., & Leary, M. (1995). The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychological Bulletin, 117(3), 497–529.

Britz, M. W., Dixon, J., & McLaughlin, T. F.  (1989). The effects of peer tutoring on mathematics performance: A recent review. B.C.J. Special Education, 13,17–33.

Cabrera, A. F., Nora, A., Terenzini, P. T., Pascarella, E. T., & Hagedorn, L. S. (1999). Campus racial climate and the adjustment of students to college: A comparison between white students and African-American students. Journal of Higher Education, 70, 134–160.

Chen, X. (2009). Students who study science, technology, engineering, and mathematics (STEM) in postsecondary education. Washington DC: U.S. Department of Education, National Center for Education Statistics, Institute of Education Sciences. Retrieved January 31, 2018 from https://nces.ed.gov/pubs2009/2009161.pdf.

Chen, X. (2013). STEM attrition: college students’ paths into and out of STEM fields (NCES 2014-001). Washington DC: U.S. Department of Education, National Center for Education Statistics, Institute of Education Sciences. Retrieved January 31, 2018 from https://nces.ed.gov/pubs2014/2014001rev.pdf.

Cohen, G. L., & Garcia, J. (2008). Identity, belonging and achievement: a model, interventions, implications. Current Directions in Psychological Science, 17, 365–369.

Cohen, G. L., & Steele, C. M. (2002). A barrier of mistrust: How negative stereotypes affect cross-race mentoring. In J. Aronson (Ed.), Improving academic achievement: Impact of psychological factors on education. San Diego, CA: Academic Press.

Cohen, P. A., Kulik, J. A., & Kulik, C. C. (1982). Educational outcomes of tutoring: A meta-analysis of findings. American Educational Research Journal, 19, 237–248.

Dovidio, J. F., Major, B., & Crocker, J. (2000). Stigma: Introduction and overview.  In T. F. Heatherton (Ed.), The Social Psychology of Stigma (pp. 1–28). New York: Guilford Press.

Early, J. W. (1998). The impact of peer tutoring on self-esteem and Texas Assessment of Academic Skills mathematics performance of tenth grade students. Unpublished doctoral dissertation, Texas A&M University, College Station, TX.

Eccles, J., Wigfield, A., & Schiefele, U. (1998). Motivation to succeed. In W. Damon (Series Ed.) and N. Eisenberg (Volume Ed.), Handbook of Child Psychology. Vol. 3: Social, Emotional, and Personality Development (5th ed., pp. 1017–1095). New York: Wiley.

Fredricks, J. A., Blumenfeld, P. C., Friedel, J., & Paris, A. (2005). School engagement. In K. A. Moore and L. Lippman (Eds.), Conceptualizing and measuring indicators of positive development: what do children need to flourish? New York: Kluwer Academic/Plenum Press.

Glynn, S. M., & Koballa, T. R., Jr. (2006). Motivation to learn college science. In J. J. Mintzes & W. H. Leonard (Eds.), Handbook of college science teaching. Arlington, VA: National Science Teachers Association Press.

Good, C. (2012). Why do women opt out? Sense of belonging and women’s representation in mathematics. Journal of Personality and Social Psychology, 102(4), 700–717.

Griffith, A. L. (2010). Persistence of women and minorities in STEM field majors: Is it the school that matters? Retrieved January 31, 2018 from http://digitalcommons.ilr.cornell.edu/workingpapers/122/

Hanover Research (2014). Encouraging Students to Embrace STEM programs. Retrieved January 31, 2018 from http://mygaen.org/research/Encouraging%20Students%20to%20Embrace%20STEM%20Programs.pdf.

Howard, G. S. (1980). Response-shift bias: A problem in evaluating interventions with

pre/post self-reports. Evaluation Review, 4(1), 93–106.

Huang,G., Taddese, N., & Walter, E. (2000). Entry and persistence of women and minorities in college science and engineering education (NCES 2000–601). Washington, DC: U.S. Department of Education, National Center for Education Statistics.

Hug, S., Thiry, H., & Tedford, P. (2011, March). Learning to love computer science: Peer leaders gain teaching skill, communicative ability, and content knowledge in the CS classroom. SIGCSE: Proceedings of the 42nd ACM Technical Symposium on Computer Science Education, Dallas, TX (pp. 201–206).

Johnson, D. R. (2012). Campus racial climate perceptions and overall sense of belonging among racially diverse women in STEM majors. Journal of College Student Development, 53(2), 336–346.

Kiyama, J. M. (2014). Structured opportunities: Exploring the social and academic benefits for peer mentors in retention programs. Journal of College Student Retention: Research, Theory, & Practice, 15, 489–514.

Kiyama, J. M., Luca, S. G., Raucci, M., & Crump-Owens, S. (2014). A cycle of retention: Peer mentors’ accounts of active engagement and agency. College Student Affairs Journal. 32, 81–95.

Leonowich-Graham, P., & Condly, S. (2010). Encouragement may be the missing link in the pursuit of CS / IT Majors. Fall 2010 Mid-Atlantic ASEE Conference,  Villanova University. Retrieved January 31, 2018 from https://www.asee.org/documents/sections/middle-atlantic/fall-2010/01-Encouragement-May-Be-the-Missing-Link-in-the-Pursuit-of-CS-I.pdf.

Li, X. (2007). Characteristics of minority-serving institutions and minority undergraduates enrolled in these institutions (NCES 2008-156). Washington, DC: U.S. Department of Education, National Center for Education Statistics.

London, B., Rosenthal, L., Levy, S., & Lobel, M. (2011). The influences of perceived identity compatibility and social support on women in nontraditional fields during the college transition. Basic and Applied Social Psychology, 33, 304–321.

Marra, R. M.,  Rodgers, K. A., Shen, D., & Bogue, B. (2009) Women engineering students and self-efficacy: A multi-year, multi-institution study of women engineering student self- efficacy. Journal of Engineering Education ,98(1), 27–38.

Monte, A. E., Sleeman, K. A., & Hein, G. L. (2007, October). Does peer mentoring increase retention of the mentor? 37th ASEE/IEEE Frontiers in Education Conference. Milwaukee, WI.

Mullin, C. M. (2012, February). Why access matters: The community college student body (Policy Brief 2012-01PBL). Washington, DC: American Association of Community Colleges

National Academies of Sciences, Engineering, and Medicine (NASEM). (2016). Barriers and opportunities for 2-year and 4-year STEM degrees: Systemic change to support students’ diverse pathways. Washington, DC: National Academies Press.

National Research Council (NRC). (2000). How people learn: Brain, mind, experience, and school.. Expanded Edition. Washington, DC: National Academies Press.

National Research Council (NRC). (2009). Learning Science in Informal Environments: People, Places, and Pursuits.  Washington, DC: The National Academies Press.

National Research Council (NRC). (2012). Community colleges in the evolving stem education landscape: Summary of a summit. Washington, DC: National Academies Press.

Ong, M. (2001). Playing with in/visibility: How minority women gain power from the margins of science culture. Women in Higher Education, 10/11, 4–44.

Palmer, R. T., Maramba, D. C., & Dancy, T. E. (2011). A qualitative investigation of actors promoting the retention and persistence of students of color in STEM. Journal of Negro Education, 80(4), 491–504.

Pérez, P., & Ceja, M. (2009). Best practices and outcomes in transfer to universities. Journal of Hispanic Higher Education. 9(1), 6–21.

Pérez, T., Cromley, J. G., and Kaplan, A. (2014). The role of identity development, values, and costs in college STEM retention. Journal of Educational Psychology, 106(1), 315–329.

Pratt, C., McGuigan, W., & Katzev, A. (2000). Measuring program outcomes: Using retrospective pretest methodology. American Journal of Evaluation, 21(3), 34–349.

President’s Council of Advisors for Science and Technology (PCAST). (2012). Report to the President: Engage to excel: Producing one million additional college graduates with degrees in science, technology, engineering, and mathematics. Washington, DC: Executive Office of the President.

Provasnik, S., & Planty, M. (2008). Community colleges: Special supplement to the Condition of Education 2008 (NCES 2008-033). Washington, DC: U.S. Department of Education, National Center for Education Statistics.

Reid, L. D., & Radhakrishnan, P. (2003). How race still matters: The relation between race and general campus climate. Cultural Diversity and Ethnic Minority Psychology, 9, 263–275.

Snyder, C. R., & Lopez, S. J. (Eds.) (2002). Handbook of positive psychology. Oxford: Oxford University Press.

Starobin, S. & Laanan, F. S. (2008). Broadening female participation in science, technology, engineering, and mathematics: Experiences at community colleges. New Directions for Community Colleges, 142, 37–46.

Tocker, Y. (2010).  Non-ability correlates of the science/math trait complex: Searching for personality characteristics and revising vocational interests. Doctoral dissertation: Georgia Institute of Technology, Atlanta, GA.

Tsapogas, J. (2004). The role of community colleges in the education of recent science and engineering graduates (InfoBrief 04-315.) Arlington, VA: Division of Science Resources Statistics, National Science Foundation.

Walton, G. M., & Cohen, G. L. (2007). A question of belonging: Race, social fit, and achievement. Journal of Personality and Social Psychology, 92(1), 82–96.

Download (PDF, 6.12MB)

Building a New Translational Research Program with Undergraduates: A Student-driven Research Class

Abstract

Course-based undergraduate research is an effective active, inquiry-based pedagogical tool. In many cases, these research experiences build on established research programs. This project report describes a research course designed to establish a new translational research program in epilepsy and to test the feasibility of engaging students early on in the research process. The outcomes of this class, including research deliverables and student learning gains assessments, indicate that engaging students in research at a very early stage in project development is a meaningful and productive pedagogical framework for student and faculty development. This high-risk model for course and research development is a novel and exciting method for engaging students in mentored research at the undergraduate level.

Introduction

Mentored research at the undergraduate level is considered a high-impact pedagogical practice (Kuh, O’Donnell, & Reed, 2013), and many STEM courses incorporate students into established research programs and projects. The benefits of course-based research are not limited to students, as faculty research progress can be boosted by the concentrated student collaboration found in these courses. Moreover, students can bring fresh perspectives and make important contributions to research at the point of new project development. Involving students in “early” research (e.g. establishing research aims, refining protocols and procedures, and collecting and analyzing background data) can be a context for simultaneously robust student learning and faculty professional development. However, the risks of failure associated with early research may make faculty reluctant to consider building a research course specifically centered on developing a new and untested project. The course described below provides evidence in favor of building a course around a new research program, using the example of a successful pilot of course-based translational neuroscience research at the undergraduate level. The work of this course, offered at a small liberal arts college, set the stage for a robust, student-centered translational research program that also advanced the instructor’s research agenda.

Translational research: From basic science to disease intervention

The confirmation in humans of the results of basic science research using cell and animal models is a critical step in developing patient-centered interventions to improve human health (US Department of Health and Human Services [USD HHS], 2015). Translational research, which bridges basic science and clinical research, is a major focus of NIH funding and support through the National Center for Advancing Translational Sciences. However, it can be challenging to implement translational research at small colleges and universities, as many of these institutions are not in a position to conduct clinical and patient-centered translational research. These shortcomings may be circumvented through the use of publicly available online databases that provide students and faculty with the opportunity to work directly with human data collected under IRB approval from large research institutions. As funding for basic science research decreases, engaging undergraduate students in the process of translational research is critical to the enhancement of their understanding and appreciation of the fundamental role of basic science in improving the health and well-being of the broader population (Hobin et al., 2012).

Epilepsy and EEG

Approximately two percent (+/- 0.11) of Americans suffer from epilepsy (US DHHS, 2017), a family of disorders in which a person who has previously had a seizure is likely to experience another unprovoked seizure (Fisher et al., 2014). The etiologies of epilepsy are varied and, in many cases, still unknown (Shorvon, 2011). Thus much of the effort in the clinic is aimed at seizure management and prevention.

The monitoring of the epileptic brain via electroencephalography, or the recording and analysis of the electrical signals of the brain, is critical to the management of epilepsy. In particular, many patients with intractable epilepsy, i.e. epilepsy that is resistant to management by medication, undergo long-term intracranial electroencephalography in the inpatient hospital setting to collect electroencephalogram (EEG) signals from up to hundreds of locations across the cortex of the brain over the course of several days. The signals are analyzed to determine whether surgical resection of the epileptic locus, or the portion of the brain implicated in the start of seizure activity, is a possible epilepsy management strategy. Yet EEG analysis is time-consuming and subject to low inter-observer reliability, especially regarding the precise timing and location of seizure onset in the brain (Abend et al., 2011; Benbadis et al., 2009; Tatum, 2013). Therefore, research on the development and use of automated, standardized, and quantitative EEG analysis through computer is an expanding field of inquiry (Acharya et al., 2013; Halford et al., 2011).

Course structure and implementation

Translational research towards understanding how EEG analysis is similar or different among rodent models of epilepsy and human epilepsy in the clinical setting serves as the foundation for the research course described in this report.  An advanced topics course (BIOL 373, Advanced Neuroscience Research) was developed and implemented in spring 2017 to model a translational EEG research laboratory environment for eleven undergraduate students. The three goals for this course were to: (1) engage multiple students in a semester-long mentored research experience, (2) determine whether student learning gains through engagement with an early research project are similar to those of students in established research projects, and (3) determine the feasibility of conducting and developing the background work for translational epilepsy research at Beloit College, a small liberal arts college with no clinical research affiliation. In this model, students were full partners with the instructor in the research process to determine the goals and direction of the project. Students gained experience with the research process and its challenges, became familiar with the procedures and outcomes of a basic science investigation of seizure detection in mice (Bergstrom et al., 2013), identified and mined a publicly available human intracranial EEG database, revised and tested a MATLAB-based algorithm—originally developed for seizure identification in mice—on human EEG signal, and established and validated a procedure for quantitative analysis of human intracranial EEG signal.

The course began with a review of research in the analysis of rodent EEG (Bergstrom et al., 2013) and a discussion of the function of translational research. The students and instructor collaboratively identified a strategy for goal-setting and reflection-based assessment that would be completed every two weeks throughout the 15-week semester, with one single-week goal-setting and reflection cycle before the mid-term break. Major assessments for the class were: (1) a public works-in-progress seminar at the Beloit College Student Research Symposium and (2) smaller weekly student-driven lecture/discussion presentations on timely research-related questions of neuroscience and epilepsy in the literature, e.g. neuron and brain anatomy, the action potential, the contribution of interictal spiking brain activity to epileptogenesis, and automated EEG analysis tools. Additional assessments included (1) pre- and post-course Course Undergraduate Research Experience (CURE) survey (Denofrio et al., 2007; Lopatto et al., 2008), (2) Student Assessment of Learning Gains, or SALG survey (Carroll, 2010), (3) and completion of the standard Beloit College end-of-semester course evaluations. Data collection and reporting procedures were approved by the Beloit College Institutional Review Board, and students provided informed consent for their participation in this study.

Students self-identified interests within the project and formed small groups to develop and accomplish sub-goals for the research project. Groups of two to six students were fixed for each two-week goal-setting/reflection period in the first half of the term and worked on goals within the broader research aims, such as identifying data sources, learning basic seizure analysis in EEG, and annotating and implementing MATLAB code. At the midterm, students re-organized into stable groups for the remainder of the semester. These groups were focused on preparing a literature review (four students), establishing a strategy for manual scoring of EEG signals (three students), and revising and analyzing MATLAB algorithm code (three students). One student served as an official liaison between the manual scoring and code revision groups (eleven students total). The two-week reflection cycle was maintained through the second half of the course.  Class time (twice a week for 110 minutes per meeting) was used primarily for weekly lab group meetings, student presentations of relevant neuroscience topics, and individual and group work interactions with the instructor.  Students were expected to be largely self-directed and to allot additional time outside of class, though logs of work were not required.

Preliminary observations and outcomes

Seven of the eleven course participants completed both the pre- and post-course surveys. Their responses indicate that students in this course made similar learning gains in relevant research skills to those of the CURE survey comparison groups (Denofrio et al., 2007; Lopatto et al., 2008) (n ≤ 9603, Figures 1 and 2, two-sample t test, p > 0.05 for all comparisons). This indicates that engaging students in a course-based project at a very early stage is a meaningful mechanism for research at the undergraduate level and also performs an important role for faculty interested in establishing a new research project or trajectory.

Student responses from the SALG survey and Beloit College course evaluation seem to indicate that students, even while doing translational research, did not make significant connections between the concepts of basic science and translational research. For example, they did not mention translational research in any of their long-form comments. However, students did report in the course evaluations and the SALG that they made clear gains in self-directed learning (Box 1). It is important to note that, while most students had little or no prior experience with neuroscience, epilepsy, EEG, or the MATLAB programming environment, they were junior- or senior-level students who had already had extensive experience with student-driven learning and research design through the broader Beloit College curriculum. Thus it is possible that students at an earlier level of academic development might not have made similar learning gains (Kirschner, Sweller, & Clark, 2006).

Figure 1: Students reported learning gains in skills associated with research.
In this class, students were responsible for starting and defining a new research project that would continue beyond the course. Because starting a new project is, in many ways, different from continuing an established project, learning gains were assessed in areas similar to those made by students engaging in established research programs through course-based research activities. Students in BIOL 373 Advanced Neuroscience Research (blue bars) made learning gains similar to national averages (gray bars) in skills related to project management and design (A) and scientific research (B), indicating that engaging students in the research process early in a new project is a meaningful way to involve students in faculty research and development (two-sample t test, p > 0.05 for all comparison). Though there was no statistically significant difference between this course and national averages for these assessment categories, gains associated with project management and design (A) were slightly higher than national averages, perhaps because the students were deeply involved in determining the progress and trajectory of the research plan. A larger gain was also noted in skills related to oral presentation of results (B) because one of the main assessments for the course was a public works-in-progress presentation as a part of our institutional student research symposium. 1 = little gain, 5 = great gain. Error bars represent 95% CI.
Figure 2: Course benefits.
The benefits of mentored research extend far beyond learning basic scientific content. These CURE survey results indicate that students make valuable learning gains related to scientific research, even at a very early stage in the research project. Students in BIOL 373 Advanced Neuroscience Research (blue bars) made learning gains in personal development (A) and understanding the process of science (B) similar to national averages, indicating that engaging students early in the research process can be an impactful research experience (CURE survey). Together, these results suggest that undergraduate educators should consider engaging students at all stages of the research project, especially including the evaluation of project feasibility and the gathering of background data and information. 1 = little gain, 5 = great gain. Error bars represent 95% CI.

Establishing a new research project: Engaging students in faculty development

In many course-based research projects, students are inserted into an already-established research project and are given a single task or experiment to complete by the end of the class. This course was different, in that the students were involved in establishing a new research program from the ground up and therefore were required to consider not only their role in the project but also how the project fit into a much broader context of sustained research. This challenging authentic research experience provided students with many opportunities to develop cognitive skills and resilience around the challenges of research and learning, especially self-directed learning and identifying research and educational resources.  Assessment of the learning outcomes of this project indicate that involving students in research at a very early point in the process, even before research aims and procedures are fully developed, can be a powerful learning tool for students.

Involving students early in the development of a new research project can also be an efficient mechanism for increasing faculty research output. The translational research outcomes of this course were significant; the deliverables completed in the class which are relevant to starting a new research project are summarized in Box 2.  Further, this preliminary work set the stage for three of the eleven students in the course to continue work with the faculty member on this project after the course, including serving as mentors for two new student researchers. Additional students will be recruited to this project in the future and will eventually see it through to completion and publication.

Together, the research deliverables and learning outcomes analyses suggest that situating early research project activities and goals as the context for a structured undergraduate course is an effective mechanism for faculty to test-drive or establish a new research program that extends beyond the course and, at the same time, engage more students in mentored research.

Challenges and Recommendations

The overt link to the unique niche of translational
research within the biomedical community did not come through in the analysis of student responses, even though students were actively engaged with the process. The concept of translational research is new to most students, and so more careful attention to highlighting the important role of this type of work is needed in models like this. Because this was a laboratory course designed to focus on analysis of EEG signal, the student presentations were primarily focused on the neurological concepts relevant to the project. However, more attention could have been directed to the impact and structure of the bench-to-bedside research model.

A future course is planned around this research project, but it will be situated at a different point in the research process than the course described here. This new course could provide additional opportunities for students to engage with the research process and to gain a broader understanding of the clinical aspects of epilepsy. Three potential additions to the course could include (1) inviting a physician to meet with the class to discuss epilepsy and EEG in the clinical context, (2) including a conference call or in-person meeting with an epilepsy researcher at a large research institution to provide additional input to the project and to model effective research collaboration, and (3) assigning students to prepare patient-centered documents or presentations to explain epilepsy, EEG, and the analysis tools that they are developing.

Finally, it is important to note that this model requires significant buy-in and trust from the students, as it is a high-risk project for both the students and the faculty member, and many students expressed uncertainty regarding their progress at some point in the course. For instance, one student commented on a lack of typical “classroom-like” learning (Box 1) while also noting clear gains in experience. While a neuroscience “crash course” or more regular lectures and activities centered on the concepts of neuroscience might have been useful for content acquisition, it is important to help students recognize that these may be common feelings as they transition from a more typical undergraduate lecture-discussion course format to a student-centered project in which students themselves are responsible for identifying and structuring their learning content. It was useful to have regular check-ins with students to help to normalize feelings of frustration and uncertainty as they encountered research roadblocks and conflicting information from published reports. Still, it is possible that recognizing the emotional investment inherent in research can help students at this stage of their academic career build resilience for future challenges. This hypothesis must be tested as we build new models for engaging students in research at the undergraduate level and in preparation for broader participation within the STEM fields.

Conclusion

Mentored research is a high-impact undergraduate education practice (Kuh, O’Donnell, & Reed, 2013), and STEM educators in particular must therefore be creative and develop more opportunities for students to be involved with and learn from the process. Students can and do make important learning gains through the process of investigating the feasibility of a translational research project and gathering background data and material in support of a larger project. The dual purpose of this course, to engage students in research and to develop a new avenue for a faculty member’s research, situates it as a model through which instructors can recognize and harness the power of students at this stage of the research project. These results should encourage faculty to consider course-based research as a powerful tool that they may wish to use to develop new lines of inquiry, and student contributions to faculty work at all other stages of a research project should be considered an essential component of research at undergraduate institutions.

About the Author

Rachel A. Bergstrom

Rachel A. Bergstrom is an assistant professor of biology at Beloit College in Beloit, WI. She is a SENCER Leadership Fellow with two major arms to her research agenda: 1) identification and quantification of ictal and interictal events in EEG, with a focus on seizure diagnosis and prediction, and 2) the intersection of identity and education in STEM, specifically how group work impacts the student experience in the classroom and is related to persistence in STEM.

References

Abend, N. S., Gutierrez-Colina, A., Zhao, H., Guo, R., Marsh, E., Clancy, R. R., & Dlugos, D. J. (2011). Interobserver reproducibility of electroencephalogram interpretation in critically ill children. Journal of Clinical Neurophysiology: Official Publication of the American Electroencephalographic Society, 28(1), 15–19. https://doi.org/10.1097/WNP.0b013e3182051123

Acharya, U. R., Vinitha Sree, S., Swapna, G., Martis, R. J., & Suri, J. S. (2013). Automated EEG analysis of epilepsy: A review.

Knowledge-Based Systems, 45(Supplement C), 147–165. https://doi.org/10.1016/j.knosys.2013.02.014Benbadis, S. R., LaFrance, W. C., Papandonatos, G. D., Korabathina,
K., Lin, K., Kraemer, H. C., & For the NES Treatment Workshop. (2009). Interrater reliability of EEG-video monitoring. Neurology, 73(11), 843–846. https://doi.org/10.1212/WNL.0b013e3181b78425

Bergstrom, R. A., Choi, J. H., Manduca, A., Shin, H.-S., Worrell, G. A., & Howe, C. L. (2013). Automated identification of multiple seizure-related and interictal epileptiform event types in the EEG of mice. Scientific Reports, 3, 1483. https://doi.org/10.1038/srep01483

Carroll, S. B. (2010). Engaging assessment: Using the SENCER-SALG to improve teaching and learning. In R. D. Sheardy (Ed.), Science education and civic engagement: The SENCER approach (Vol. 1037, pp. 149–198). Washington, DC: American Chemical Society. https://doi.org/10.1021/bk-2010-1037.ch010

Denofrio, L. A., Russell, B., Lopatto, D., & Lu, Y. (2007). Mentoring: Linking student interests to science curricula. Science, 318(5858), 1872–1873. https://doi.org/10.1126/science.1150788

Fisher, R. S., Acevedo, C., Arzimanoglou, A., Bogacz, A., Cross, J. H., Elger, C. E., … Wiebe, S. (2014). ILAE official report: a practical clinical definition of epilepsy. Epilepsia, 55(4), 475–482. https://doi.org/10.1111/epi.12550

Halford, J. J., Pressly, W. B., Benbadis, S. R., Tatum, W. O., Turner, R. P., Arain, A., … Dean, B. C. (2011). Web-based collection of expert opinion on routine scalp EEG: Software development and interrater reliability. Journal of Clinical Neurophysiology, 28(2), 178–184. https://doi.org/10.1097/WNP.0b013e31821215e3

Hobin, J. A., Deschamps, A. M., Bockman, R., Cohen, S., Dechow, P., Eng, C., … Galbraith, R. (2012). Engaging basic scientists in translational research: Identifying opportunities, overcoming obstacles. Journal of Translational Medicine, 10, 72. https://doi.org/10.1186/1479-5876-10-72

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86. https://doi.org/10.1207/s15326985ep4102_1

Kuh, G. D., O’Donnell, K., & Reed, S. (2013). Ensuring quality & taking high-impact practices to scale.  Washington, DC: American Association of Colleges and Universities.

Lopatto, D., Alvarez, C., Barnard, D., Chandrasekaran, C., Chung, H.-M., Du, C., … Elgin, S. C. R. (2008). Undergraduate research. Genomics education partnership. Science, 322(5902), 684–685. https://doi.org/10.1126/science.1165351

Shorvon, S. D. (2011). The etiologic classification of epilepsy. Epilepsia, 52(6), 1052–1057. https://doi.org/10.1111/j.1528-1167.2011.03041.x

Tatum, W. O. (2013). How not to read an EEG: Introductory statements. Neurology, 80(1 Supplement 1), S1–S3. https://doi.org/10.1212/WNL.0b013e318279730e

US Department of Health and Human Services (USDHHS). (2015). Translational science spectrum. Retrieved January 17, 2018, from https://ncats.nih.gov/translation/spectrum

US Department of Health and Human Services (USDHHS). (2017). NIH categorical spending – NIH research portfolio online reporting tools (RePORT). Retrieved January 17, 2018, from https://report.nih.gov/categorical_spending.aspx

Download (PDF, 1009KB)

An Authentic Course-Based Research Experience in Antibiotic Resistance and Microbial Genomics

Abstract

We have designed and implemented a novel microbiology elective course “Microbiology of Urban Spaces” to provide students with a transformative education in microbial ecology and genomics. It champions the values of general education while making sure students are well equipped for their future careers. Infusing my personal research into the course allowed me the time and resources needed to advance my own research, while allowing the students to tackle an authentic and real-world problem that they can be passionate about. Several students who were engaged in the research course developed their own research projects during the summer, based upon their own ideas and questions. These students have taken the first steps towards developing the mindset and confidence in themselves that will enable them to succeed in their future scientific endeavors. Though still in its infancy, this course shows great promise to promote SENCER ideals at Mercy College and beyond.

Introduction

A Capacious and Civic Issue

Bacteria residing in the environment can act as reservoirs for resistance, having been exposed to many antimicrobials such as disinfectants, heavy metals, and antibiotics (He et al. 2014). Frequently encountered in the environment are the Staphylococci, many species of which are human pathogens. Especially problematic are the coagulase negative staphylococci, as they are among the most resistant, the most prevalent in environmental settings, and frequently the source of hospital-acquired infections of immunocompromised patients (Becker et al. 2014).

One of the most recognized and worrying antibiotic-resistant bacteria is a form of Staphylococcus aureus called MRSA or Methicillin Resistant Staphylococcus aureus. MRSA is recognized as a serious threat by the CDC, causing 80,000 infections and 11,000 deaths annually (CDC 2013). About one in three people carry Staphylococci asymptomatically in their noses. Several different mechanisms of transmission have been described for MRSA and it is frequently isolated from the environment (Smith et al. 2010). The recent emergence of community-associated MRSA or CA-MRSA has had a huge impact on the field, as the bacteria are acquired by people with no known risk factors. What is known about transmission of MRSA (Smith et al. 2010), particularly in the built environment, has generated many questions that can be of interest to our students. Such questions can include the following: Is the choice of material used in construction important in how long bacteria can adhere to a surface? Are some types of staphylococci better able to adhere to surfaces than others? Can some surfaces facilitate colonization by bacteria more readily than others?

Many Mercy students are studying to be healthcare professionals, such as nurses and veterinary technologists. As such, they are usually familiar with antibiotic-resistant bacteria. Thus, my goal is to help students understand the role of human activity, particularly the role they themselves can play, in driving or tackling this problem. Antibiotic resistance is now being recognized as a global threat (Nathan and Cars 2014). Over the past ten years, the Infectious Diseases Society of America, the Centers for Disease Control and Prevention, the World Health Organization (WHO), and the World Economic Forum have placed antibiotic-resistant bacteria at center stage. The WHO exclaimed in April 2014 (WHO 2014) that the problem “threatens the achievements of modern medicine. A post-antibiotic era—in which common infections and minor injuries can kill—is a very real possibility for the 21st century.” The Obama administration released a National Action Plan for Combating Antibiotic-Resistant Bacteria in March 2015 (The White House 2015a). The 2016 federal budget almost doubled the amount of federal funding for combating and preventing antibiotic resistance to more than $1.2 billion (The White House 2015b). Our success or failure in the coming years will depend upon continued support for these initiatives and having a well-educated workforce, ready and prepared to tackle this capacious problem.

Results and Discussion

Students As Researchers

Incorporating research into the classroom, be it the lecture or the laboratory, affords all students an opportunity to be included in and exposed to research, which their economic means, schedule, or background may prevent them from otherwise experiencing (Bangera and Brownell 2014; Gasper and Gardner 2013). Engaging students in undergraduate research can promote retention and career readiness and increase enrollment in graduate studies. It can improve their critical thinking and problem solving abilities as well as their independence (Auchincloss et al. 2014; Harrison et al. 2011; Jordan et al. 2014; Lopatto et al. 2008). Thus, the aim of this ongoing project is to design, implement, and improve upon a novel course-based undergraduate research experience that investigates the prevalence and persistence of antibiotic-resistant staphylococcal bacteria in the environment. By participating in this course, students engage with the literature and keep pace with new developments in antibiotic resistance research; they learn about government-driven and global efforts to combat resistance; and finally, they present their work in a public forum. They begin to understand the dual roles that research and education play in tackling this capacious problem. The course involves isolating and characterizing specific antibiotic-resistant staphylococci colonizing the campus, using a range of classical and next-generation techniques and correlating these findings with metagenetics, a novel technology that allows the researcher to sample all DNA at a site (Blow 2008). This new course called “Microbiology of Urban Spaces” directly ties into my own research agenda and expertise and helps me to recruit and retain a team willing and ready to tackle the problem. Student learning outcomes are presented in Box 1 and specific activities in Box 2. The data generated as part of this project are used as a foundation for further student projects in the summer and have served as preliminary data for federal grant proposals and to obtain funding to support and sustain the course.

Briefly, students isolate individual bacteria using media selective for antibiotic and heavy metal resistance and characterize them phenotypically and genotypically over the course of the semester. They use a BSL2 lab that was recently refurbished for the purpose of microbiological research. The students are then encouraged to design their own phenotypic-based experiments (antibiograms, biofilms, adherence) to be conducted over the summer, and to develop their own research questions while continuing to harness the technologies and techniques learned in the course. The course is designed such that the metagenetic data are available for analysis towards the end, allowing time to expose the students to other characteristics and mechanisms leveraged by environmental staphylococci. The metagenetic component (swabbing, isolating DNA, and sequencing) is entirely at the discretion and choice of the students. In the first meeting of the course, students are introduced to my research questions and the work that  my students and I have completed to date. They then brainstorm what sites would be of interest to target for sampling in view of my research and considering their own research questions. Once they have discussed and planned, the students, working as a team, sample various sites on campus. In Spring 2016, we targeted the new residence hall and sites such as elevator buttons, door handles, and handrails, and in Fall 2016, we targeted various water bodies in the vicinity of Mercy, including the Hudson and East Rivers and the Old Croton Aqueduct. The data we generated in Spring 2016 revealed the impact of human presence on newly colonized buildings at Mercy, and we have begun to design experiments targeting the specific organisms we have isolated and identified on surfaces there. While my original target was antibiotic-resistant staphylococci, we have also used metagenetics to identify the presence of Acinetobacter, Pseudomonas and Streptococcus on surfaces, many species and strains of which are also resistant to antibiotics. We shall adapt and modify our screening in future semesters.

How the Students Are Evaluated

Microbiology of Urban Spaces is designed not only to improve students’ knowledge and understanding of research and antibiotic resistance, but also to train them to be 21st-century citizens. Students are expected to work in teams and build their communication skills. In this digital age we use instant messenger and group chats to facilitate communication. Dropbox is used to store course materials, protocols, and data in shared folders. Digital lab books are used (viewable to all team members) to ensure notes are updated regularly. Students are expected to be able to use and develop their quantitative reasoning skills and develop mastery of basic microbiology techniques such as dilutions, conversions, and basic computational tools and to generate a properly formatted bibliography. Above all else, the course encourages critical thinking and teamwork; students are able to choose their own sampling sites, interpret their findings, and learn from their mistakes. Repetition and iteration ensure mastery. Students are graded on the basis of their participating in lab meetings and lab activities, their detailed lab books, their final papers, and the generation of a scholarly poster. In addition, a survey based upon the SENCER SALG is administered at the beginning and end of the course, as well as the standard Mercy College End of Course surveys.

Student Success, Course Limitations, and Reflections

Since the pilot, I have been able to recruit eight students to participate each semester, and the course has gone through three iterations. Each section has been a success, with students reporting their enjoyment, self-satisfaction with their learning, and demonstrating their improvement in knowledge and skills over the span of the semester. Many had never generated a poster, worked with computational tools, or used molecular biology techniques except in class (if at all). Two students registered to take the course for a second time. Feedback from the End of Course and SALG surveys was positive as indicated in Box 3 and 4 (though not all students responded). In Spring 2016, when asked on the End of Course survey “if they would recommend a course to their friends and why,” students answered, “Sure, opens your eyes to the world of research and looks great when applying to any grad schools,” and “Yes, I personally learned a lot more about microbiology research and improved my skills.”  Limitations and student concerns were also noted in the end of semester surveys, where a student revealed that they didn’t enjoy the lectures. Interestingly, student frustration with backordered/missing lab supplies also manifested itself on the end of semester surveys, indicating that they were indeed having an authentic experience. The minimal budget and modest lab facilities limit some of what can be done at Mercy. Students also learned that working in the lab is frequently frustrating and not always for reasons under our control.

Several of the students who were in the Spring 2016 pilot continued to work on their projects over the summer and developed their own areas of research such as prevalence of enterotoxin genes, detection of bacteria in the gym, natural antimicrobials, and using antimicrobials in building products. At the end of both Spring semesters, students in the class presented their work at a local conference, the Westchester Undergraduate Research conference. In addition, students who continued their Spring 2016 projects into the summer presented their own independent research projects at national and international meetings such as CSTEP (Collegiate Science and Technology Entry Program), ABRCMS (Annual Biomedical Research Conference for Minority Students) and Microbe (the American Society for Microbiology Annual Meeting). On the basis of their abstracts, one student was awarded a partial travel grant to attend ABRCMS and received an honorary mention for her poster at CSTEP. Another student was awarded an ASM Capstone award to attend and present at Microbe 2017.

One of the most useful aspects of the course was using digital tools to facilitate teamwork and continual feedback. The use of Dropbox to store the digital lab books, though simple, was a successful social experience, as the students and I were able to engage with one another and make comments on each other’s work; it was particularly useful since many of the students had jobs and commuted to school. The students could also make use of pictures and notes taken in class shared via Dropbox to ensure that their own lab books were up to date and not missing details. The groups used WhatsApp to connect with one another and to stay in contact throughout the course. This meant that students truly behaved as if they were on a team and worked as a unit throughout. When working on their poster in Spring 2017, the students took it upon themselves to book a conference room and displayed the poster on the screen as they worked together in order to ensure that their poster was generated collaboratively and collectively.

Summary and Future Directions

Undergraduate research experiences can greatly enhance the career development and readiness of all students in STEM fields, and they have shown substantial impact on the retention of students in STEM disciplines. By integrating my research into a classroom-based research experience, I have enabled students to gain exposure to research while enhancing their critical thinking, communication, quantitative reasoning, and teamwork skills. For three semesters, I have had eight students register and the feedback has been positive. Working with the students has also rewarded me: useful and intriguing data were generated, which now inform my research and further student projects in the lab. In the coming semesters, I will continue to improve upon and modify this course so that it exemplifies a SENCER Model Course and provides a truly transformative and successful experience for our students.

About the Author

Davida S. Smyth is an Associate Professor and Chair of Natural Sciences at Mercy College in Dobbs Ferry, New York. A SENCER Leadership Fellow, her research focuses on the genomics of Staphylococcus aureus and the impact of antibiotic resistance in clinical and environmental strains of staphylococci. She is also interested in pedagogical research in the area of student reading skills in STEM disciplines and peer-led team learning in Biology.

Acknowledgments

The author would like to acknowledge the hard work and diligence of the students at Mercy College and her collaborators at CUNY, Prof. Jeremy Seto (New York City College of Technology), Prof. Avrom Caplan (City College), and Prof. Theodore Muth (Brooklyn College). She would also like to thank the members of the library staff, namely Susan Gaskin Noel, Hailey Collazo, and Andy Lowe, who assisted with the generation and printing of the posters. The development of the novel course “Microbiology of Urban Spaces” was funded through a Mercy Senate Micro-Grant for Course Redesign. Additional funding came from a Mercy Faculty Development Grant. Lastly she would like to thank her colleagues at SENCER, namely Monica Devanas, Eliza Jane Reilly, Stephen Carroll, and Kathleen Browne for their guidance and assistance with the projects to date.

References

Auchincloss, L.C., S.L. Laursen, J.L. Branchaw, K. Eagan, M. Graham, D.I. Hanauer, … and M. Towns. 2014. “Assessment of Course-Based Undergraduate Research Experiences: a Meeting Report.” CBE – Life Sciences Education 13 (1): 29–40.

Bangera, G., and S.E. Brownell. 2014. “Course-Based Undergraduate Research Experiences Can Make Scientific Research More Inclusive.” CBE – Life Sciences Education 13: 602–606.

Becker, K., C. Heilmann, and G. Peters. 2014. “Coagulase-Negative Staphylococci.” Clinical Microbiology Reviews 27: 870–926.

Blow, N. 2008. “Metagenomics: Exploring Unseen Communities.” Nature 453: 687–690.

Centers for Disease Control and Prevention (CDC). 2013. Antibiotic Resistance Threats in the United States, 2013. http://www.cdc.gov/drugresistance/threat-report-2013/ (accessed June 13, 2017).

Gasper, B.J., and S.M. Gardner. 2013. “Engaging Students in Authentic Microbiology Research in an Introductory Biology Laboratory Class Is Correlated with Gains in Student Understanding of the Nature of Authentic Research and Critical Thinking.” Journal of Microbiology and Biology Education 14 (1): 25–34.

Harrison M, D. Dunbar, L. Ratmansky, K. Boyd, and D. Lopatto. 2011. “Classroom-Based Science Research at the Introductory Level: Changes in Career Choices and Attitude.” CBE – Life Sciences Education 10: 279–286.

He, G.X, M. Landry, H. Chen, C. Thorpe, D. Walsh, M.F. Varela, and H. Pan. 2014. “Detection of Benzalkonium Chloride Resistance in Community Environmental Isolates of Staphylococci.” Journal of Medical Microbiology 63 (5): 735–741.

Jordan, T.C., S.H. Burnett, S. Carson, S.M. Caruso, K. Clase, R.J. DeJong, … and A.M. Findley. 2014. “A Broadly Implementable Research Course in Phage Discovery and Genomics for First-Year Undergraduate Students.” MBio 5 (1): e01051–13.

Lopatto D, D. Alvarez, D. Barnard, C. Chandrasekaran, H.-M. Chung, C. Du, … and S.C.R. Elgin.  2008. “Undergraduate Research: Genomics Education Partnership.” Science 322: 684–685.

Nathan, C., and O. Cars. 2014. “Antibiotic Resistance – Problems, Progress and Prospects.” New England Journal of Medicine 371: 1761–1763.

Shaffer, C.D., C. Alvarez, C. Bailey, D.  Barnard, S. Bhalla, C. Chandrasekaran, … and S.C.R. Elgin. 2010. “The Genomics Education Partnership: Successful Integration of Research into Laboratory Classes at a Diverse Group of Undergraduate Institutions.” CBE – Life Sciences Education 9 (1): 55–69.

Smith, T.C., E.D. Moritz, K.R. Leedom Larson, and D.D. Ferguson. 2010. “The Environment as a Factor in Methicillin-Resistant Staphylococcus aureus Transmission.” Reviews of Environmental Health 25: 121–134.

The White House, Office of the Press Secretary. 2015a. FACT SHEET: Obama Administration Releases National Action Plan to Combat Antibiotic-Resistant Bacteria. https://obamawhitehouse.archives.gov/the-press-office/2015/03/27/fact-sheet-obama-administration-releases-national-action-plan-combat-ant (accessed June 13, 2017).

———. 2015b. FACT SHEET: President’s 2016 Budget Proposes Historic Investment to Combat Antibiotic-Resistant Bacteria to Protect Public Health. https://obamawhitehouse.archives.gov/the-press-office/2015/01/27/fact-sheet-president-s-2016-budget-proposes-historic-investment-combat-a (accessed June 13, 2017).

World Health Organization (WHO). 2017. Antimicrobial Resistance: Global Report on Surveillance 2014. http://www.who.int/drugresistance/documents/surveillancereport/en/ (accessed June 13, 2017).

Download (PDF, 238KB)

Experiential Learning in the 21st Century: Service Learning and Civic Engagement Opportunities in the Online Science Classroom

Abstract

Online higher education programs provide opportunities and access to students who might not have enrolled in a higher education program otherwise. As the demand for these online programs increases, including those in the STEM fields, the need for experiential learning opportunities becomes critical. Experiential learning in the online environment can take place in a multitude of ways, can generate student engagement, and can incorporate collaborative learning opportunities. Together, these courses will involve hands-on learning experiences that address real-world needs, service learning, and civic engagement, all which encompass the central focus for these opportunities and are the foundation on which these courses will be built.

Introduction

A growing demand for online higher education programs brings with it the challenge of incorporating civic engagement responsibilities into an online environment. According to the 2015 Survey of Online Learning, conducted by the Babson Survey Research Group and published in the Online Learning Consortium’s Online Report Card (Allen et al. 2016), 2.85 million students are taking all of their courses in an online environment, while another 2.79 million are taking at least one online course. To put that in perspective, more than one in four students (28 percent) took at least one online course in the fall of 2014. Southern New Hampshire University’s College of Online and Continuing Education (SNHU COCE) currently serves online students and offers more than 200 online college degrees and certificates, including those in Environmental Science and Geosciences. The demand for individuals in these fields is expected to increase 10 to 11 percent faster than average between 2014 and 2024, according to the Bureau of Labor Statistics (2016); therefore, providing innovative, hands-on, experiential learning opportunities for these students is crucial.

SNHU COCE incorporates experiential learning opportunities into its online STEM programs with a unique approach. Experiential learning is grounded in the work of John Dewey, Kurt Lewin, and Jean Piaget (Kolb 1984). Dewey (1938) argued that education and learning are social and interactive processes and stated that there is a connection between education and personal experience. Lewin and his Lewinian Model of Action Research and Laboratory Training focused on learning as facilitated by experience, acquisition of data, and observations. Piaget’s Model of Learning and Cognitive Development incorporates aspects of these two, but also adds reflection and action to the mix. Together, the philosophy of experiential learning can best be described as a process of learning as opposed to learning on the basis of outcomes (Kolb 1984). According to Kolb (1984), “knowledge is created through the transformation of experience.” (See Figure 1 for a depiction of experiential learning in the 21st century framed in the context of Kolb’s experiential learning cycle.)

The purpose of the experiential learning courses for our online learners is to provide students with an opportunity to gain experience in their chosen field. In this report, we’ll focus specifically on civic engagement and service learning opportunities within the experiential learning courses. Civic engagement and service learning opportunities promote a sense of community and civic responsibility using reflective thinking to develop the students’ academic skills. Students participating in these types of immersive opportunities have the chance to work in local communities, address current environmental issues, and assist communities in implementing solutions. Course outcomes for the experiential learning courses revolve around guided reflection. The act of reflection is often a process that allows for the reorganization of knowledge and thought in order to attain greater insight (Moon 2004, 82). According to Moon (2004), understanding, decision making, resolution, and action outcomes can result from the use of reflective processes, including reflective journaling. Together, these reflective processes link reflection with the process of learning.

In the experiential courses, students reflect on scientific practices and real-world situations; they reflect on how experiential learning opportunities play a role in driving the achievement of their goals, and examine the relationship between the application of scientific inquiry and their real-world experiences. Students engage in reflective learning by participating in various discussions with their peers (collaborative reflection), along with writing in weekly journals to document their journey through the many experiences they encounter (personal reflection). (See Figure 2 for an overview of student journal guidelines.)  Upon completion of the course, students produce a guided written reflective piece that summarizes all of their experiences and details how those experiences have influenced their personal goals and future career path and helped identify what questions they may still have as they go forth in their educational and professional careers.

Online Experiential Learning in Science through Service Learning and Civic Engagement

Service learning has been identified as a high-impact practice that promotes higher-level learning and success (Kuh 2008; Brownell and Swaner 2010). The National Task Force on Civic Learning and Democratic Engagement (2012) is calling for renewed energy in community engagement, civic engagement, and service learning. Service learning and civic engagement involve building a sense of responsibility to one’s community and allow students the opportunity to apply concepts and ideas learned in class to real-life situations and scenarios (Holland et al. 2008, 165). Experiential learning with an emphasis on service learning and civic engagement in the online science learning environment can take place in a multitude of ways and can, in fact, generate high levels of student engagement and collaborative learning opportunities. The learning can take place in both the student’s local community and in the online environment where students interact with their peers and a faculty member, sharing, communicating, problem solving, and reflecting throughout the course.

At Southern New Hampshire University’s College of Online and Continuing Education, the goal is to provide students with meaningful learning experiences that connect to real-world relevance. To achieve this goal, an online science experiential learning undergraduate course has been created for our Environmental Science and Geoscience majors that includes varying topics that rotate throughout the year. Students may take this elective course up to two times in total. (See Figure 3 for the Course at a Glance Overview.)

Students engage in short-term immersive learning experiences that span roughly two months and include a minimum of seventy documented hours of experience. (See Figure 4 for the required weekly student timesheet template.) Students have the opportunity to engage in service while concurrently reflecting on their experience, exploring personal and professional development opportunities, applying scientific concepts to real-world situations, and developing competencies and skills around a desired career interest. The course also allows students to make personal connections in their field of interest and provides a face-to-face experience where students can demonstrate competency in the field to potential future employers, colleagues, or collaborators.

Examples of topics that focus on service learning and civic engagement in science for the online science experiential learning course are discussed below.

Service Learning

Service learning is a form of experiential learning that involves equal focus on student learning and community service goals. Service learning encompasses both reflection and reciprocity, where students actively participate in the service learning project and reflect on their experiences, in a dynamic action-reflection process. In Service-Learning in Higher Education (1996), Barbara Jacoby writes, “Service-learning is a form of experiential education in which students engage in activities that address human and community needs together with structured opportunities for reflection designed to achieve desired learning outcomes.” Therefore, in the online experiential learning course, students are actively engaged in learning opportunities that address a real-world need, while also providing time for reflection and discussion as learners progress towards mastery of course learning outcomes.

Service Learning and Grant Writing

Students learn to write a science grant in a real-world setting. They are tasked with finding and working with a local community partner organization in their area (such as a local, state, or national agency or park, museum, wildlife center, science center, aquarium, or zoo). The students work with their chosen entity to develop a grant proposal for funding that will be submitted to a granting agency for consideration. Students are not assessed on the outcome of the grant application process, but rather the outcomes and assessment focus on the experiential reflective learning process. In this experience, students make connections in their local community, serve the organization’s need by submitting a grant on their behalf, and gain a marketable skill.

Service Learning and Field Experience

Field experience can be interpreted broadly, but generally refers to gaining experience in the field in which the student would like to work. For example, it may include service in a branch within the Department of the Interior, e.g. National Park Service (NPS), United States Fish and Wildlife Service (FWS), United States Geological Service (USGS), or serving on a local (city or county) geographic information system (GIS) project. Conversely, it may involve students who serve as data analysts on a scientific study that encompasses large data sets ready for analysis and synthesis. In this case, students work collaboratively with a faculty member who provides the raw data for the course, and the team of faculty and students work together to analyze and synthesize the data. The data analysis and synthesis could also include a final communication of those science results in a journal, data report, or other research publication.

Field experience allows students to gain skills that will help them in their future careers, and to make connections in the field, add to their professional network, and serve the needs of a community project or organization by serving its overall goal or mission in some capacity.

Civic Engagement

Civic engagement centers on making a real-world difference in the community while concurrently developing knowledge, skills, competencies, and abilities to achieve successful course and community project outcomes. Civic engagement can take on many forms in the higher education environment, and it prepares students to be engaged citizens. In our civically engaged experiential learning opportunities, students work on authentic science projects that are designed to make a difference in the community and provide students with real-world experience in science.

Civic Engagement through Community Citizen Science

In the online science experiential learning classroom, the world is our lab (Figure 5). Citizen science, or public participation in science, offers science students the opportunity to engage in science along with a greater community of collaborators or participants. Students gain experience facilitating and leading the public in real-world science. For example, students may create a citizen science species monitoring project on iNaturalist and host a BioBlitz in their local area. A BioBlitz refers to a period of time (such as a weekend) when organisms in a certain geographic area are surveyed and documented. The iNaturalist mobile device app allows for the BioBlitz to take place, with participants using smart phones and uploading images of the organism to the iNaturalist project.

In 2017, the “City Nature Challenge,” which began in California in 2016, became a national event. The April “City Nature Challenge” (Natural History Museum of Los Angeles County 2017) coincided with “National Citizen Science Day” and included a friendly BioBlitz-style competition among sixteen cities across the United States. The “City Nature Challenge” uses iNaturalist to document species in a given area during a set period of time. Therefore, events like this can be a way for students to get involved in their local community and organize, lead, and facilitate BioBlitz events with the public. Engagement in community citizen science and BioBlitz events can lead to publishing ideas and opportunities for students, including the creation of a blog relating their experiences. Reporting about the experience is beneficial to the learning process, and also serves to reinforce an important aspect of the science process: communicating the science. In addition, science students help identify organisms that come in from participant observations during the challenge, and ultimately student participation helps to “crowdsource” and update species guides for each region. (See Figure 6 for an example of the updated species guide from the North Texas area, following the 2017 City Nature Challenge.) In 2018, the City Nature Challenge will be a global event. Imagine the unlimited possibilities for your own students when the world comes together in a locally engaged, globally connected iNaturalist BioBlitz next spring.

Conclusion and Discussion

The journey into experiential learning in the online science classroom has only just begun and the service learning and civic engagement examples discussed in this article are only the beginning for online experiential learning opportunities in science. We look forward to continuously learning from our students and our colleagues, and to applying collective stakeholder feedback as we further expand our course topic offerings. We welcome and invite discussion and collaboration with the entire SENCER community as we continue the exciting journey and evolution in online science education to serve the twenty-first-century learner.

About the Authors

Kelly Thrippleton-Hunter is a Faculty Lead for Undergraduate Science at Southern New Hampshire University’s College of Online and Continuing Education. She received two B.S. degrees, one in Zoology and the other in Environmental Biology and Ecology, from California State University, Long Beach in 2002, a Ph.D. in Environmental Toxicology from the University of California, Riverside in 2009, and an M.A.T. in Science from Western Governors University in 2015.

Jill Nugent is the Associate Dean for Science at Southern New Hampshire University’s College of Online and Continuing Education. She is currently a doctoral candidate at Texas Tech University, investigating locally engaged, globally connected citizen science in university science courses.

References

Allen, I.E., J. Seaman, R. Poulin, and T.T. Straut. 2016. “2015 Online Report Card: Tracking Online Education in the United States.” https://onlinelearningconsortium.org/read/online-report-card-tracking-online-education-united-states-2015/ (accessed May 31, 2017).

Brownell, J.E., and L.E. Swaner. 2010. Five High-Impact Practices: Research on Learning Outcomes, Completion, and Quality. Washington, D.C.: Association of American Colleges and Universities.

Bureau of Labor Statistics, U.S. Department of Labor. 2016. Occupational Outlook Handbook, 2016–17. Washington, D.C.: U.S. Government Printing Office.

Dewey, J. 1938. Experience and Education. New York: Macmillan.

Holland, B.A., S. Billig, and M. Bowdon. 2008. Scholarship for Sustaining Service-Learning and Civic Engagement. Charlotte, N.C.: Information Age Publishing.

Jacoby, B. 1996. Service-Learning in Higher Education: Concepts and Practices. San Francisco: Jossey-Bass.

Kolb, D.A. 1984. Experiential Learning: Experience as the Source of Learning and Development. Englewood Cliffs, NJ: Prentice Hall.

Kuh, G. 2008. High-Impact Educational Practices: What They Are, Who Has Access to Them, and Why They Matter. Washington, D.C.: Association of American Colleges and Universities.

Moon, J.A. 2004. A Handbook of Reflective and Experiential Learning: Theory and Practice. New York: RoutledgeFalmer.

National Task Force on Civic Learning and Democratic Engagement. 2012. A Crucible Moment: College Learning and Democracy’s Future. Washington, D.C.: Association of American Colleges and Universities.

Natural History Museum of Los Angeles County. 2017. “City Nature Challenge 2017, April 14–18.” https://nhm.org/nature/citizen-science/city-nature-challenge-2017 (accessed May 31, 2017).

Download (PDF, 1.28MB)

 

Teaching Research to Undergraduates through an Outdoor Education Program

Abstract

There has been an increased emphasis in recent years on implementing active learning strategies in science courses for undergraduate students. Particularly, undergraduate research methods courses have focused on incorporating pedagogies that utilize a practical application of the course content. As a result, we created a research methods course for undergraduate health sciences students to teach them about research methodology through a hands-on project.  The health sciences students were part of an outdoor education program, where for one week third and fourth grade students from an elementary school came to a camp as part of an outdoor education experience. The health sciences students taught the children a variety of STEM  (Science, Technology, Engineering and Mathematics) and health/wellness skills and content.  In addition, the undergraduate students learned about research methods by conducting their own studies during this outdoor education program. The benefits were twofold.  The health sciences students learned about research methodology in an applied and practical manner and the elementary school children experienced STEM education in an outdoor environment.

Introduction

The value of active learning in science education has been emphasized by many national organizations (American Association for the Advancement of Science 1993: Association of American Colleges and Universities 2007; National Research Council 1999, 2003a, 2003b; National Science Foundation 1996).  Encouraging students to formulate their own ideas, interpret data, generate conclusions from experimental evidence, and participate in other hands-on activities can be more effective than the passive learning that typically occurs during lecturing.  The increased recognition of the value of active learning is supported by a growing body of evidence demonstrating the effectiveness of incorporating active learning techniques in the undergraduate classroom (Prince 2004).  The literature has shown improved learning when a variety of active learning strategies were used in a wide range of science disciplines including physics (Hake 1998), chemistry (Niaz et al. 2002; Towns and Grant 1997), biology (Burrowes 2003), nursing (Clark et al. 2008), and physiology (Mierson 1998).

In most health sciences undergraduate programs, a research methods course is part of the curriculum.  Many faculty who teach undergraduate research courses are aware of the challenges that are associated with making this material practical for students. Research is an area that students have unfavorable attitudes toward, attitudes that may become even more negative upon taking a research methods course (Sizemore and Lewandowski 2009).  One potential reason for the lack of interest is students’ inability to perceive themselves as engaged in meaningful research activities as undergraduate students (Rash 2005; Macheski et al. 2008). The literature has demonstrated that students tend to learn abstract concepts more fully when they can apply them to their to “real world” settings (Macheski et al., 2008).  In our health sciences department, we have implemented active learning strategies utilizing other approaches (FitzPatrick and Campisi 2009; Campisi and Finn 2011; FitzPatrick et al. 2011; Finn and Campisi 2015), but we wanted to create a way to specifically teach research methods using active learning in an outdoor education program. After examining the effects of active learning pedagogies on student learning and perceptions for a number of years, we have implemented different pedagogies such as clickers, peer-led team mentoring, and group and collaborative learning, to examine how active learning effects both student learning and perceptions. Many of these pedagogies have improved student learning and have had positive impact on student perceptions.

For the outdoor education project, we redesigned our undergraduate research methods course to incorporate participation in a research project.  We hoped that stimulating interest in research through active and collaborative learning would allow students to understand the practical implication of research.

The Outdoor Education Program

During this project, 100 third and fourth grade children participated in a five-day, five hour/day outdoor education program that took place at a local day camp owned by the YMCA. This program was a joint venture between the city’s school district and the local YMCA to provide elementary students with an exciting opportunity to participate in active learning in a camp setting. This was the first outdoor experience in a camp environment for many students who participated in this program.  As part of being enrolled in the research methods course, the health sciences undergraduate students implemented this outdoor education program by utilizing the camp’s program areas and natural ecosystems to provide the children with unique experiential learning activities in four main curricular areas: science and math, healthy living, environmental education, and team building. These engaging activities and the use of natural surroundings encouraged the children to explore their interests and abilities in a safe and nurturing environment. Below is more detail on each section of the curriculum.

Environmental Education: This component of the curriculum corresponds with the goals of the school system, the Massachusetts State School Standards, and the New National Science Standards. Each day, students learned about a different ecosystem at the camp (e.g. the wetlands, fresh water lake, forest, and open field) through a combination of hands-on experiments and lectures.  In each ecosystem, students learned about the different types of animals, plant life, rocks, the cycles of natural resources, and the dangers that each ecosystem faces, among other topics. Students also took nature hikes and performed on-site field tests, including taking water and soil samples and testing pH.

The Science and Math of Camp: This component of the program included several physical activities that provided the opportunity for students to learn math and science skills. These activities included

Maps –The goal of this module was to allow students to develop and make maps using scale, topography, measurements, and other skills.

Archery – While participating in archery, students were provided the opportunity to learn about velocity, rate of speed, distance, inertia, and gravity.

Canoeing – While participating in this activity, students could learn about propulsion, angles, planes, kinesiology and biomechanics, resistance and friction, and wind and currents.

Gaga –The goal of this activity was for students to learn how to play the popular camp game Gaga. While playing, they wear devices such as a pedometer, to measure steps, distance traveled, and overall activity levels. Students took the data from these devices and recorded it, and then, using the Active Science curriculum, analyzed the data, answered questions, and drew conclusions about the data.

Team Building: The team-building component was a progressive learning experience where students were encouraged to challenge themselves in a variety of different ways. This provided emotional and physical growth and gave each student the feeling of self worth and self-accomplishment. The week began with team-building activities on land, such as “get to know you” games, trust falls, spotting techniques, and problem-solving games. As the group mastered the land activities, they moved to the low ropes course. At the camp, there were seven low ropes elements. Each element had two groups participating (one group spotting and one group climbing). After mastering the low ropes course elements, students over the age of ten had the option of trying the high ropes course. There were seven high ropes course elements, including a zip line. Younger students (over the age of eight) had the chance to try the giant swing. The camp’s ropes course offered a variety of fun opportunities to build trust, solve problems and learn the value of collaborative teamwork.

Healthy Living: During this component of the program, students were exposed information about living healthy lifestyles. These included safety concepts, healthy eating and nutrition, and physical activity.  Activities included Water and Boating Safety, Garden Project, Fitness Challenge, Otterthon Relay Race, and Field and Court Games. The students were encouraged to participate, be active, and have fun with their classmates.  They learned about the importance of being physically active, having good nutrition habits, and overall what it means to be healthy.

Research Methods Course

The research methods course was delivered during the summer session for six weeks.  Twelve students were enrolled in the course. During the first two weeks of class, the health sciences students learned about the outdoor education program and became familiar with the curriculum and content that they would be teaching to the children.  From there, the class was divided into four groups of three students each to come up with a research question that they wanted to investigate during the program.   As part of the course, one of the first assignments that the students completed was a proposal that detailed the specifics of the research project. They were required to provide a research question, hypothesis, methods (participants, data collection, data analysis), and the type of research design that they were interested in carrying out.  Based on what they learned at the beginning of the course about the types of research designs, they created a study and a question to match the design.  Once the students completed the assignment on the design of their study, the instructor met with each group to review it.  The instructor provided feedback on ways to improve the study and the students worked to incorporate the changes to make the design stronger.  This back and forth process happened until the instructor felt the design was well thought out and could answer the research question.

Prior to going into the field, the students had a solid research study that addressed a specific research question. The research questions the students focused on were specific to the one-week outdoor education experience. Two of the student projects focused on assessing the amount and level of physical activity that the participants accumulated while in the outdoor education program. They compared physical activity levels such as sedentary, light, moderate, and vigorous between classes, curriculum components, age, and gender.  Another group assessed the science learning that occurred during the camp. They performed pre- and post-assessment to determine science knowledge that was gained through the experience. They had a control group that did not perform the outdoor education program for a comparison.  The last group examined the participants’ perceptions of learning in the outdoor education environment.  They conducted surveys of all participants at the end of camp and then interviewed a subset of children to gather their feedback on the outdoor experience.

During weeks three and four of the course, the health sciences students were in the field implementing the curriculum and collecting data.  At the end of the course (weeks five and six), the students returned to the classroom to analyze their data. The students learned about the different types of statistical analysis (correlational, independent t-test, ANOVA) that could be performed based on their design and research question. The hands-on application of real data to teach the statistical analysis portion of this course was viewed positively by both the students and the instructor.  They worked on creating a final paper and presentation that represented the results of their study.  The course concluded with a presentation from each group to the YMCA senior leadership, board members, classroom teachers and administrators, and faculty.

Conclusion

This approach was a way to demonstrate how to teach research methods to undergraduate health sciences students through a community-based initiative in an urban school district.  The health sciences students felt that a project-based approach was an effective way to learn the content of the course. The course objectives were met through demonstration of performance on course quizzes and through designing and carrying out a research study, analyzing the data, and writing and presenting the results of the project.  As we continue to offer this course, we will use this approach to create measures that assess student perceptions of learning for both the health sciences students and the elementary school children. The active learning and student-centered pedagogical strategy created a culture of ownership over the research project and excited students about the course material.  In many science lecture and laboratory courses, active learning can be an effective method to improve student learning and understanding and to improve student attitudes about a subject. Incorporating a team-based research project that uses the outdoor environment into a research methods course can help prepare students for future research experiences and their professional careers.

About the Author

Dr. Kevin Finn is an Associate Professor and Chair of Health Sciences at Merrimack College. His area of expertise is curriculum and teaching in the health professions with a focus around increasing physical activity in children. Kevin is a licensed athletic trainer in Massachusetts and a certified strength and conditioning specialist.

References

American Association for the Advancement of Science. 1993. Benchmarks for Science Literacy: Project 2061.  Washington DC: AAAS.

Association of American Colleges and Universities. 2007.  College Learning for the New Global Century. Washington DC: AACU.

Burrowes, P.A. 2003.  “A Student-Centered Approach to Teaching General Biology That Really Works: Lord’s Constructivist Model Put to a Test.” The American Biology Teacher 65 (1): 491–502.

Campisi, J., and K. Finn. 2011. “Does Active Learning Improve Students’ Knowledge of and Attitudes Toward Research Methods?” Journal of College Science Teaching 40 (4): 38–45.

Clark, M.C., H.T. Nguyen, C. Bray, and R.E. Levine.  2008.  “Team-Based Learning in an Undergraduate Nursing Course.” Journal of Nursing Education 47 (3): 111–117.

Hake, R.R. 1998. “Interactive-Engagement Versus Traditional Methods: A Six-Thousand-Student Survey of Mechanics Test Data for Introductory Physics Courses.”  American Journal of Physics 66 (1): 64–78.

Finn, K., and J. Campisi. 2015. “Implementing and Evaluating a Peer-Led Team Learning Approach in Undergraduate Anatomy and Physiology.” Journal of College Science Teaching 44 (6): 323–328.

FitzPatrick, K.A., K.E. Finn, , and J. Campisi. 2011. “Effect of Personal Response Systems on Student Perception and Academic Performance in Courses in a Health Sciences Curriculum.” Advances in Physiology Education 35 (2): 280–289.

FitzPatrick, K.A., and J. Campisi. 2009.  “A Multiyear Approach to Student-Driven Investigations in Exercise Physiology.”  Advances in Physiology Education 33 (4): 349–55.

Macheski, G.E., J. Buhrmann, K.S. Lowney, and M.E.L. Bush. 2008. “Overcoming Student Disengagement and Anxiety in Theory, Methods, and Statistics Courses by Building a Community of Learners.” Teaching Sociology 36 (1): 42–48.

Manning K., P. Zachar, G.E. Ray, and S. LoBello. 2006. “Research Methods Courses and the Scientist and Practitioner Interests of Psychology Majors.” Teaching Psychology 33 (1): 194–196.

Mierson, S. 1998. “A Problem-Based Learning Course in Physiology for Undergraduate and Graduate Basic Science Students.” Advances in Physiology Education 20 (1): 16–21.

National Research Council. 1999.  Transforming Undergraduate Education in Science, Math, Engineering, and Technology.  Executive Summary.  Washington, DC: National Academy of Science Press.

———. 2003. Evaluating and Improving Undergraduate Teaching in Science, Technology, Engineering and Mathematics. Washington, DC: The National Academies Press.

———. 2003.  Bio 2010. Transforming Undergraduate Education for Future Research Biologists. Washington, DC: The National Academies Press

National Science Foundation. 1996.  Shaping the Future: New Expectations for Undergraduate Education in Science, Mathematics, Engineering, and Technology. Washington, DC: NSF Directorate for Education and Human Resources; NSF 96-139.

Niaz, M., D. Aguilera, A. Maza, and G. Liendo. 2002. “Arguments, Contradictions, Resistances, and Conceptual Change in Students’ Understanding of Atomic Structure.”  Science Education 86 (2): 505–525.

Prince, M. 2004.  “Does Active Learning Work? A Review of the Research.” Journal of Engineering Education 93 (3): 223–231.

Rash, E.  2005.  “A Service Learning Research Methods Course.”  Journal of Nursing Education 44 (10): 477–478.

Sizemore O.J., and G.W. Lewandowski. 2009. “Learning Might Not Equal Liking: Research Methods Course Changes Knowledge But Not Attitudes.” Teaching Psychology 36 (1): 90–95.

Towns, M.H., and E.R. Grant. 1997. “Cooperative Learning Activities in Physical Chemistry.”  Journal of Research and Science Teaching 34 (2): 819–835.

National Research Council.  2003. Evaluating and Improving Undergraduate Teaching in Science, Technology, Engineering and Mathematics. Washington, DC: The National Academies Press.

National Research Council. 2003.  Bio 2010. Transforming Undergraduate Education for Future Research Biologists. Washington, DC: The National Academies Press

Download (PDF, 212KB)

Pre-Service Teachers’ Acquisition of Content Knowledge, Pedagogical Skills, and Professional Dispositions through Service Learning

Abstract

Teacher candidates seeking a K-6 license took a science methods course during which they participated in focused service learning. Candidates were provided the necessary science content instruction to enable them to write the actual event activities and serve as Event Leaders for the regional Science Olympiad competition. Data related to candidate acquisition of content knowledge, pedagogical skills, and professional dispositions were gathered from candidates’ responses to written reflections and standardized surveys.  It was concluded that through their practical and engaged work participants learned science content and gained pedagogical skills necessary for teaching science.  Further, candidates gained desirable professional dispositions related to such civic engagement elements as developing sustainable partnerships, engaging in mutually beneficial work, and serving a diversity of students.

Introduction

The University of North Carolina Asheville

The University of North Carolina Asheville (UNC Asheville) opened in 1927 as Buncombe County Junior College. The school underwent several name changes, mergers with local governments and school systems, and moves before relocating in 1961 to the present campus. Asheville-Biltmore College joined the UNC system in 1969 as UNC Asheville, with the distinct mission to offer an excellent undergraduate liberal arts education.

UNC Asheville is the only designated undergraduate liberal arts university in the 17-campus UNC system. UNC Asheville is a public State Institution of Higher Education and is classified as a Baccalaureate College of Arts and Sciences by the Carnegie Classification system. UNC Asheville is accredited by the Commission on Colleges of the Southern Association of Colleges and Schools. The university has received national recognition for its Humanities and Undergraduate Research programs. U.S. News & World Report ranks UNC Asheville as one of the top five public liberal arts colleges in its America’s Best Colleges edition and lists the Undergraduate Research Program among “Programs to Look For” along with some of the top research universities in the country. UNC Asheville is consistently rated a “Best Buy” in the Fiske Guide to Colleges. UNC Asheville founded the National Conference on Undergraduate Research more than 25 years ago, and the university emphasizes student participation in faculty-mentored research projects. Additionally, most UNC Asheville students undertake career-related internships, and are supervised by university faculty during their time working in the field. Seventeen percent of UNC Asheville students take advantage of study abroad and study away programs. Finally, many courses and on-campus programs engage students in service projects aimed at improving the quality of life at home and around the world, which is a major focus of the university.

Teacher Licensure at UNC Asheville

The mission of UNC Asheville’s Department of Education is to prepare candidates for a North Carolina Standard Professional I Teaching license with a liberal arts foundation. The Department of Education engages with all departments across campus in the preparation of professional educators; undergraduate candidates major in an academic area specific to their intended licensure area, along with taking additional courses necessary to earn their North Carolina teaching license. Hence, Education is not a major or a minor, but is an area of concentration in addition to the academic major. This structure reflects the liberal arts model. Undergraduate licensure candidates in K–12 and 9–12 areas major directly in their area of specialty (e.g. those seeking K–12 Art licensure major in Art), candidates in 6–9 areas either major directly in their area of specialty or in Psychology, and candidates in K–6 may choose any major. This model necessitates a strong liaison-based partnership between representatives from each of the academic majors and the Department of Education. Post-baccalaureate candidates who have earned the requisite Bachelor’s degree may earn a teaching license by taking the necessary Education courses only, or may take a prescribed set of major courses in addition to their Education courses if they are pursuing licensure in a different area from their undergraduate major. Post-baccalaureate candidates are expected to meet the same program requirements and outcomes as undergraduate candidates. The National Council on Teacher Quality has rated the UNC Asheville Department of Education as a Best Value among North Carolina Colleges of Education, and among the top six teacher preparation programs in the Southeast.

Because UNC Asheville is a liberal arts institution, candidates take Arts and Sciences courses in the departments across campus in which they acquire their content knowledge. Courses taken in the Department of Education are structured to build on this content knowledge in the provision of pedagogical skills. This model is supported by such researchers as Davis and Buttafuso (1994), who provide an historical perspective on the role of small liberal arts colleges and teacher preparation. Their claim is that the type of curricular cooperation that is inherent at liberal arts institutions such as UNC Asheville promotes the development of teachers who are knowledgeable, thoughtful, and reflective.

The schools with which UNC Asheville partners frequently speak to the strength of the liberal arts model. In fact, they claim that the strong content knowledge UNC Asheville teacher licensure graduates possess, coupled with their pedagogical knowledge, puts these graduates at the top of the applicant pool. For all of its strengths and advantages, this liberal arts model does come with limitations. The greatest of these limitations is time in the teacher licensure program.  Because Education is not a major at UNC Asheville, and candidates are taking their major and other content courses in other departments, there are precious few hours in each candidate’s schedule in which Education courses can fit. All programs have been structured so that undergraduate candidates can graduate with their major and licensure in four years of full-time attendance, but the course of study is intense for these candidates. And this means that Education courses must be efficient at all costs. Therefore, the focus of Education courses at UNC Asheville is almost strictly on pedagogy. It is vital, then, for instructors of Education courses to find ways to reinforce, and in some cases even facilitate the learning of, content knowledge that candidates need—even though Education courses are technically not “supposed to” focus on this.

Background

North Carolina Requirements for Teacher Licensure Programs

In 2009, all licensure programs in North Carolina were revised to meet North Carolina Department of Public Instruction (NCDPI) requirements. As part of these requirements, all licensure programs were to develop Evidences to be completed by each teacher licensure candidate and submitted to NCDPI to show candidate attainment and demonstration of competencies that meet six statewide Standards for 21st Century Teaching and Learning. These standards include candidate attainment of content knowledge, pedagogical skills, and professional dispositions with which the Department of Education at UNC Asheville’s Conceptual Framework tenets of Content, Pedagogy, and Professionalism directly align. Following is a summary of the six state-required standards, and the approved Evidences the UNC Asheville Department of Education developed to meet the standards (note that for standards 1 and 4 NCDPI defined a required Evidence for every licensure program in the state)

Breadth of Content Knowledge – All candidates completed at least twenty-four semester hours of coursework relevant to the specialty area from a regionally accredited college or university with a grade of C or better in each of the twenty-four hours in order to be licensed. Additionally, all K–6 and Special Education candidates must have received satisfactory scores on the Praxis II exam in order to be licensed.

Depth of Content Knowledge – Candidates completed a Content Exploration Project. Data from assessment of this project showed candidates’ depth of understanding and application of content knowledge per professional and state standards for the specialty area, and the ability to relate global awareness to the subject.

Pedagogical and Professional Knowledge Skills and Dispositions – Candidates created a three- to five-day integrated thematic teaching Unit Plan. Data from assessment of the unit showed candidates’ ability to design effective classroom instruction based on P–12 professional and state standards, and use of effective pedagogy and research-verified practice.

Pedagogical and Professional Knowledge Skills and Dispositions – All student teachers are evaluated by their supervisor, in consultation with the P–12 clinical faculty member, using the state-required Certification of Teaching Capacity Instrument. All candidates must receive a rating of “Met” on each facet of the instrument on the final evaluation.

Positive Impact on Student Learning – Candidates completed an Impact on Student Learning Project. Data from assessment of this project showed candidates’ impact on P–12 student learning given state P-12 standards.

Leadership and Collaboration – Candidates completed the Professional Development Project: Self, Learner, Community. Data from assessment of this project showed candidates’ ability to demonstrate leadership, collaboration, and professional dispositions per professional and state standards for teacher candidates.

Unit faculty applied common rubrics, also approved by NCDPI, to evaluate candidate products related to Evidences 2, 3, 5, and 6, and all candidates had to score a level 3 or higher on each facet of the assignment rubric.

In 2014, the North Carolina State Board of Education (SBE) adopted a policy requiring that all licensure candidates in every licensure area pass the SBE-approved licensure exam(s) for each initial licensure area. For all licensure areas except K–6 and Special Education, these approved exams were the Praxis II.  For K–6 and Special Education, the SBE adopted a new Pearson Foundations of Reading and General Curriculum Test. The Pearson Test is comprised of a Foundations of Reading subtest; a General Curriculum Mathematics subtest; and a General Curriculum Multi-Subjects subtest consisting of questions pertaining to Language Arts, History and Social Science, and Science and Technology/Engineering. These subtests are all comprised of multiple choice items testing content knowledge in each area. An Integration of Knowledge and Understanding section is also completed by test takers, which includes a few constructed response items to test pedagogical knowledge. For K–6 and Special Education candidates and licensure programs, the new Pearson Test signified a significant change from the previously required Praxis II exam, which almost exclusively tests pedagogical knowledge. The SBE-adopted policy also included the provision that the Evidences required for standards 2 and 3 would be replaced by candidate scores on the SBE-approved licensure exams. Candidates take their licensure exam(s) as one of the final steps to completing their licensure process, after finishing their licensure program.

Purpose for the Study

The aforementioned liberal arts model and changes to licensure exam requirements posed a new challenge regarding the K–6 licensure program at UNC Asheville. Because of the number of areas in which a candidate must be prepared to teach at the K–6 level (Reading, Language Arts, Mathematics, Science, Social Studies, and Health being among the major ones), the K–6 licensure program at UNC Asheville is by far the largest in terms of the number of Education courses required. UNC Asheville K–6 candidates had enjoyed a 100 percent pass rate on the Praxis II for a number of years before the Pearson test was adopted. However, it is important to remember that the Praxis II centered almost solely on pedagogy. The new Pearson test focuses almost solely on content, whereas K–6 courses focused almost solely on pedagogy in direct alignment with former licensure exam requirements and the liberal arts model. To meet the new requirements, faculty in the K–6 program at UNC Asheville began work to structure courses and experiences to ensure that candidates were provided the knowledge necessary to make them successful in their quest for a license and with regard to the competencies required to be effective teachers, while continuing to serve the needs of the public schools and community. This researcher serves as the instructor for the Elementary Science Methods course and worked to structure the course and provide candidates with science-related learning experiences for these reasons. This project grew as a result of this structuring and the desire to determine its impact.

Specific Goals for Candidates, Students, the Community, and University Faculty

The desired outcome of this project was that UNC Asheville K–6 licensure candidates and participating elementary students, as well as the involved UNC Asheville faculty member who is the instructor of EDUC 322, would benefit from this civic engagement project. This would be made possible through the use of effective teaching strategies, including inquiry, discovery learning, questioning strategies, and demonstrations; active reflection on theories of science education and learning, and how they can be utilized in the classroom and beyond; participation in a variety of educational experiences which positively impact the teaching of science; and sharing responsibility within the greater community for and recognizing the value of collaborations on issues of mutual concern, benefit, and accomplishment.

The specific goals related to this project were as follows:

UNC Asheville K–6 licensure candidates will acquire content knowledge necessary for teaching science in their future classrooms.

UNC Asheville K–6 licensure candidates will acquire pedagogical skills necessary for teaching science in their future classrooms.

UNC Asheville K–6 licensure candidates will acquire professional dispositions necessary for being effective teachers in their future classrooms.

Elementary Science Methods Course

All K–6 licensure candidates are required to take EDUC 322 (Inquiry-Based Science Instruction, K–6). Throughout the semester, candidates enrolled in EDUC 322 learn about effective Science, Technology, Engineering, and Mathematics (STEM) teaching methodology, and how these methodologies translate to their teaching of future elementary students about science and the scientific method. The course has a focus on teaching using the 5E Learning Cycle. Great emphasis is placed on inquiry and discovery learning, as candidates in the course are afforded traditional classroom learning in addition to participation in hands-on labs aligned with science strands. Candidates also engage in an inquiry-based micro-teaching experience into which the use of Common Core text exemplars are integrated. Given the liberal arts model, the primary goal of the course is to teach effective methodologies for science education, as science content is taught within the other departments in the university outside of the Department of Education. However, science content knowledge is drawn upon throughout the EDUC 322 course within the context of exploring teaching methodologies.

As part of this instruction and practice, licensure candidates in EDUC 322 participate in field experiences during which they gain additional hands-on experience working with elementary students on the teaching of science. Candidates spend six sessions in an elementary classroom observing and/or assisting the classroom teacher, and in addition, each candidate teaches an inquiry-based lesson on their own. Candidates complete a comprehensive Science Notebook as a reflection on the field experience.

Elementary Science Methods and Service Learning

Perhaps the most significant aspect of the EDUC 322 course is candidates’ focused participation in service learning. Candidates participated in the Asheville City Schools (ACS) Kids Inquiry Conference (KIC) in the Spring 2010, Spring 2011, Fall 2011, Spring 2012, Fall 2012, Spring 2013, and Spring 2014 semesters.  Unfortunately, the event had to be cancelled due to ACS’s focus on Read to Achieve mandates.  Candidates participated in the Elementary Science Olympiad in the Spring 2013, Spring 2014, Spring 2015, Spring 2016, and Spring 2017 semesters.

The KIC was an event unique to Asheville City Schools, and was conceived as an alternative to the traditional Science Fair activity. The instructor of EDUC 322 partnered with the ACS Science Coach to plan and facilitate the KIC. Throughout each semester in which KIC was held, EDUC 322 candidates completed their field experiences in the classrooms of third, fourth, and fifth grade teachers and students who would be participating in KIC. This provided the EDUC 322 candidates with the opportunity to assist students with their projects and guide students as they engaged in the inquiry and discovery learning necessary to complete their projects. To complete their projects, students, usually working in pairs or groups of three, engaged in scientific inquiry focused on student-generated questions that came from their curiosities about the natural world. The teachers and EDUC 322 candidates guided students in generating these questions and led students through the process of making predictions, collecting data, analyzing the data, and drawing conclusions related to these questions. Students then created a visual presentation of their investigation and results, and prepared to discuss these with peers.

After a semester of work, the students were prepared for the KIC. During the KIC, UNC Asheville hosted the students and their teachers in a conference on the UNC Asheville campus.  During the conference, the students presented visual representations of their work, and asked and answered questions from their peers. The EDUC 322 candidates who worked with the participating students and teachers served as conference facilitators. Candidates’ roles as facilitators consisted of keeping time during each presentation, aiding with the discussion by asking questions and offering topics for discussion, and assisting students as they rotated to different tables so they could experience a variety of presentations. The instructor of EDUC 322 supervised and guided the candidates as they completed their work during the semester, and instructed candidates regarding safe and ethical practices for working with students. The instructor of EDUC 322 also served as the conference host and facilitator by coordinating all of the logistics for the conference including room reservations, scheduling, bus parking, and arranging for a campus tour for students. Each conference typically involved approximately 200 elementary students and ten elementary teachers.

Science Olympiad is a national program which engages elementary, middle, and high school students in competitions based on national and state STEM standards. Most competitions are team-based, and all require students to engage in hands-on inquiry science activities. Students choose their preferred event(s) from a list of approximately eighteen, and spend the better part of a school year working on their chosen event(s) with their school’s sponsor teacher and their peers on the Science Olympiad team in order to prepare for the competition.

The instructor of EDUC 322 has partnered with the Regional Director of the Elementary Science Olympiad, who is also a high school science teacher in an area school. At the beginning of each EDUC 322 semester, the Regional Director visits the EDUC 322 class and together she and the EDUC 322 instructor provide a description of and orientation to Science Olympiad. During this orientation, EDUC 322 candidates are provided information about their role related to their participation as event leaders and event writers for the Science Olympiad competition. This information is on topics such as the event code of ethics, event rules, event writing guidelines, event scoring guidelines, and safe and ethical practices regarding working with students.  Throughout the EDUC 322 semesters, candidates work to write their events according to competition standards and under the supervision and guidance of the EDUC 322 instructor. This supervision and guidance involves advising candidates as to the content of their events, providing them with resources to obtain the information necessary to write their events, reviewing and editing their work, assisting them with gaining access to hands-on materials they require to carry out their event, and making copies of student answer sheets and any other written materials needed for events.

EDUC 322 candidates put their knowledge into further practice as they serve as event leaders for the actual Science Olympiad competitions. Event leadership consists of supervising competing students, setting up event materials, and scoring competitors’ products. Candidates are supervised by the EDUC 322 course instructor and the Regional Director at each Science Olympiad event.

Methods

Candidate Written Reflections – KIC

Participating EDUC 322 candidates were required to produce written reflections of their experience working on the KIC project. These reflections were graded as part of the course grade for EDUC 322, and evaluated using a standardized rubric. The prompts provided for reflection were as follows:

Situational Context – List the date(s) during which you served as a facilitator, how many students were at your table during each session, and how many presentations you saw during each session.

Describe – Briefly describe the student presentations for which you served as a facilitator.

Analyze – Discuss the presentations you saw in terms of the relevance of the topics of the investigations carried out, the effectiveness of the presentations, and the quality of the questions asked by peers.

Appraise – Evaluate what you observed as a facilitator. Discuss any problems that occurred and why they occurred, what questions you have about the KIC process, and other topics you find relevant.

Transform – Discuss your involvement in KIC as it relates to your future teaching practice in science. Be sure to answer these questions: What might you do with the knowledge you gained to inform your teaching?  How did what you learned by participating in KIC connect with the topics you learned in our course?

Candidate Written Reflections—Science Olympiad

Participating EDUC 322 candidates were required to produce written reflections of their experience working on the Science Olympiad project. These reflections were graded as part of the course grade for EDUC 322, and evaluated using a standardized rubric. The prompts provided for reflection were as follows:

Situational Context – Name the event you led and the event with which you assisted. Give a two sentence description of each event.

Describe – Describe what you did to prepare the event you led.

Analyze – What was student performance like in the event you led?  What was the range of student performance? What surprised you?

Appraise – Evaluate what you observed as an event leader. Discuss what problems occurred and why they occurred, and what suggestions you have for improving the event you led and the tournament as a whole.

Transform – Discuss your involvement in Science Olympiad as it relates to your future teaching practice in science. Be sure to answer these questions: What might you do with the knowledge you gained to inform your teaching?  How could you implement your own Science Olympiad experience for your students, even if it wasn’t supported in your school or district?

Standardized Science Olympiad Surveys

The standardized surveys used by Science Olympiad as an organization were given to all participating UNC Asheville candidates to gain feedback from them after they served as event leaders, and the results were analyzed. Questions on the survey included the following and were rated by candidates on a scale from 1 (Strongly Disagree) to 5 (Strongly Agree):

I was fully prepared to lead this event.

Tournament director(s) were well organized.

The event rules were clear.

The event site for this event was satisfactory.

I was provided with the materials and resources I requested.

Orientation opportunities were provided to prepare me.

Students were prepared for the event.

The event was inquiry in nature.

Service Learning Survey

A Service Learning Survey was administered to EDUC 322 candidates as both a pre- and post-assessment of the impact of their participation in service learning. Appropriate IRB guidelines for a classroom-based project were followed. Questions included on the survey were as follows and were rated by candidates on a scale from 1 (Strongly Disagree) to 5 (Strongly Agree):

As a result of participation in service learning I am likely to

examine my own cultural experiences

educate myself on multiple perspectives

use reflection to evaluate my current teaching activities

develop lessons that include contributions of all cultures

build on learners’ strengths

teach global awareness

incorporate different points of view in my teaching

create lessons that require student collaborations

incorporate student reflection into lessons

encourage students to change things at school they disagree with

encourage students to change things in the community they disagree with

teach students that they can make a difference

teach students to work for equality for people of different races, cultures, or genders

make students aware of their political or civil rights

teach students that the world outside of school is a good source of curriculum

work to improve collaboration between school and community

seek a leadership role in curriculum development at my school

participate in decision making structures (e.g., school improvement team, district planning team, school board)

seek information (e.g., local, state, or national data) when developing school improvement goals

have an interest in education policy

work to understand community problems

work with someone else to solve a community problem

become regular volunteer for an electoral organization

become a regular volunteer for a non-electoral organization

be an active member in a group or organization

regularly vote

persuade others to vote

contact elected officials

regularly seek “news” (newspaper, radio, news magazine, internet, TV)

Pearson Science and Technology/Engineering Subtest

The standardized Pearson test, composed of a Foundations of Reading subtest; a General Curriculum Mathematics subtest; a General Curriculum Multi-Subjects subtest consisting of multiple choice questions pertaining to Language Arts, History and Social Science, and Science and Technology/Engineering; and an Integration of Knowledge and Understanding section which includes a few constructed response items to test pedagogical knowledge as applied to teaching a concept in a content area, has been taken by all K–6 candidates since the 2013–2014 academic year. Each test taker receives an overall Scale Score, a Sub-Area Performance score for each of the three General Curriculum Multi-Subjects subtests, and a score for the Integration of Knowledge and Understanding section. The Sub-Area Performance scores for the multiple choice items are presented on a scale from 1 to 4 to show how many items test takers answered correctly, as follows:

1-Few or none of the items answered correctly

2-Some of the items answered correctly

3-Many of the items answered correctly

4-Most or all of the items answered correctly

The Integration of Knowledge and Understanding scores for the constructed response items are presented on a scale from 1 to 4 to show the quality of the response by the test takers, as follows:

1-Weak, blank, or unscorable

2-Limited

3-Adequate

4-Thorough

For this study, the Sub-Area Performance scores for the Science and Technology/Engineering subtest and the Integration of Knowledge and Understanding scores were analyzed.

Results

Key Findings:  Candidate Written Reflections – KIC

Participant responses (N=61) to the written reflection related to their participation in the KIC were evaluated to determine the most common themes that emerged in reference to content and pedagogy. An overwhelming number of participants (N=56) indicated that involvement with the KIC provided them with more science content knowledge. In their reflections on the experience they stated such things as, “I believe the presentations were very effective, because I even learned things that I didn’t know before such as Ingles brand bag holds the least amount of weight compared to Best Buy and Wal-Mart…”

Numerous participants (N=50) also noted that their role in the KIC assisted them with learning how students conduct inquiry. Participants’ anecdotal comments, such as the following, demonstrate this learning: “…I feel that the process of going through putting together an experiment, making predictions, implementing the experiment, and then having to present their findings was a good exercise and definitely good practice for further inquiry….”

Finally, a number of participants (N=44) suggested that the KIC process taught them to assist students with communicating in scientific terms and carrying out investigations using technological design. This was exemplified in participant comments such as:

Participating in the KIC conference will be helpful to me as a future science teacher. I was able to see that students as young as eight and nine are able to follow the science process and they can work through a problem efficiently. For some reason, the age of these students compared to their work surprised me. I wasn’t expecting such good quality work and investigations, and I look forward to trying this out in the classroom.

and:

I found that many of the presentations were relevant to a child’s life. Many students asked, “So, why did you do this? How does this affect your life?” The students that tested hair ties said they wanted to know what hair [tie] would be best to wear at the playground. The students who tested the batteries said they wanted to know which one lasted the longest for their camping trip. The topics listed above are far different from the science projects I did in elementary school. The topics are things that really matter to the students. One may say that knowing what frozen pizza has the most cheese is not a relevant topic, but what I saw at conference was that it was sometimes the process more than the content that was effective. The students were really engaging in scientific thinking and solving everyday problems using scientific methods. I have no doubt that the students will be better equipped to solve real life science problems because of the conference.

Key Findings:  Candidate Written Reflections – Science Olympiad

Participant responses (N=44) to the written reflection related to their participation in the Science Olympiad were evaluated to determine the most common themes that emerged in reference to content and pedagogy. Almost all participants (N=36) wrote that they felt confident that they could make a Science Olympiad event for their own class or grade level that could be used as a science teaching experience. In fact, some plans, such as the one provided by the following participant, were very fully developed:

I would implement a science Olympiad in my classroom by grouping students into two or three and assign 3 events for each to compete in. Students can have a choice of course. It would take place during the end of the year as an all-day event after EOG’s as a fun way to end the school year. I could potentially use a designated spot outside for Newton’s Notions and an empty room/space near-by for overflow of activities. Stations would have to be condensed in order to fit inside my one classroom and furniture rearranged or taken out of the room for additional space.  The groups will have time to prepare similar to the real Science Olympiad. I would bring in volunteers to help with the stations (preferably student teachers, NOT PARENTS) and supervise each event. There would be eight different events inside my classroom.  Each event would consist of 3 activities.

Most participants (N=32) said that their participation in Science Olympiad gave them the skills needed for building a classroom science community around the concept of students possessing common scientific knowledge on a variety of topics. Participant reflections demonstrating this include the following:

I think this experience made a definite impact as far as me feeling like a REAL teacher. This experience really made being a teacher as real as possible. By observing what students are able to do and what they cannot do, it also enhanced by awareness of upper-level elementary developmental/thinking and where they are with that.

Many participants (N=30) specified that their involvement in Science Olympiad provided them with ideas centering on multiple means for assessing student knowledge. One participant suggested:

I also can envision possibly using the Science Olympiad as an assessment or testing tool.  Should the Olympiad be used as a testing tool, the individual grades would be graded, but not shared.  The students could be divided into teams of 4 or 5 students before the testing period. Their test scores would be combined to form a team score.  My guess is that this would encourage a higher level of preparation and group study before the test.

Key Findings:  Standardized Science Olympiad Survey

Given the nature of this survey and because of its standardization to serve the needs of the established Science Olympiad program, the results shown in Table 1 do not reveal much in terms of participant (N=44) acquisition of skills related to content, pedagogy, or professional dispositions. The exception is with regard to the first and last items. Participants had to have the appropriate content knowledge in order to create their event and be fully prepared to lead it, and most participants had to study and learn content information in order to do so. Therefore, the fact that the mean rating for the first item was 4.8 was a good indicator that participants gained content knowledge as a result of their participation as Science Olympiad event leaders. The mean rating of 4.7 for the last item was also encouraging, as it suggested that participants understood the nature of inquiry as a result of their role in Science Olympiad.

Key Findings:  Service Learning Survey

Participant responses (N=78) to the Service Learning Survey were evaluated to determine the items for which participants showed the most growth between their pre- and post-service learning participation in reference to professional dispositions. From the results illustrated in Table 2, four topics emerged: as a result of their participation participants indicated they were more likely to educate themselves on multiple perspectives, use reflections to evaluate their current teaching activities, teach students that the world outside of school is a good source of curriculum, and work to improve collaboration between school and community.     

Key Findings:  Pearson Science and Technology/Engineering Subtest and Integration of Knowledge and Understanding Section

The means of participant results on the Pearson Science and Technology/Engineering Subtest were analyzed by year. For 2014–2015 (N=14) the mean was 2.64. For 2015–2016 (N=12) the mean was 3.08. For 2016–2017 (N=8) the mean was 3.25. The means of participant results on the Pearson Integration of Knowledge and Understanding section were also analyzed. For 2014–2015 (N=14) the mean was 1.86. For 2014–2015 (N=12) the mean was 2.58. For 2016–2017 (N=8) the mean was 2.63. In the 2014–2015 testing year, three participants did not pass the General Curriculum Multi-Subjects subtest the first time they took it. For the 2015–2016 and 2016–2017 testing years the same was true for one participant each year. In all of these instances, for purposes of this study, the first testing attempt was used in figuring the means so that the same level of data was used for all participants.

Discussion and Summary

Two of the goals of this project for participating candidates centered on the acquisition of content knowledge and pedagogical skills necessary for teaching science in their future classrooms. The Key Findings show clearly that these goals were achieved, especially when the results from the instruments used to obtain results in this study are considered together.  Specifically, in the Key Findings section above it is stated that the results from the Standardized Science Olympiad Survey as shown in Table 1 do not say much on their own about participant acquisition of skills related to content, pedagogy, or professional dispositions, with the exception of the first and last items.  The results related to the first item on this survey do, on their own, suggest that participant content knowledge was improved by their participation in the Science Olympiad.  The impact of these results is strengthened by participants’ anecdotal comments on the Candidate Written Reflections for the Science Olympiad which include, “I really enjoyed creating my event for the Science Olympiad and I learned a lot about rocks and minerals and became more informed on the information…” and, “I feel like this was a great first time getting to work with older students. I’ve only worked with kindergarteners so far. I felt confident helping the students because I knew what I was talking about, due to my research on the subject….”  The results related to the last item on the Science Olympiad Survey showed that participants understood the nature of inquiry as a result of their role in Science Olympiad.

Participant reflections support this claim.  As one participant stated:

I definitely want to incorporate my event stations into activities that students could do in my future classroom. Rocks and Minerals can be boring for certain students but having activities to incorporate learning makes it more enjoyable for students. After taking several education classes I have learned through myself that hands-on activities give me a better understanding of information and make learning more enjoyable when you are able to be creative through acting and building things. The students really enjoyed looking at the rocks and minerals I had as samples and the students seemed to be very intrigued.

The Pearson test  components, as a standardized and quantitative measure of participant learning, can also be considered in concert with the Standardized Science Olympiad Survey. As can be seen, the means related to the subtests of of science content and pedagogical knowledge increase each testing year. As described in the Background section, the KIC was terminated by ACS after the Spring 2014 semester. Additionally, the Science Olympiad is held only in Spring semesters. EDUC 322 was offered every semester until Spring 2016 and thereafter was offered only in Spring semesters. Therefore, there were some participants who completed their licensure program and the Pearson test in the 2014–2015 and 2015–2016 testing years without having participated in either one of the EDUC 322 service learning activities. All participants who completed their licensure program and the Pearson test in the 2016–2017 testing year participated in at least the Science Olympiad activity. The increased means on the analyzed Pearson test component strengthen the conclusion that participants’ knowledge regarding both content and pedagogy increased, despite the technicality that EDUC 322 is not “supposed to” teach content. It is the assumption of this researcher that this outcome is due to the practical and engaged work in which participants were involved as part of their service learning.

Another project goal centered on the acquisition of professional dispositions candidates will need to be effective teachers in their future classrooms. The definition of professional dispositions has been widely disputed, as there are many dimensions through which the concept can be delineated. The quest to define dispositions dates back to seminal works, such as those completed by Arthur W. Combs in the 1960s, which sought to determine the dispositions that effective teachers must possess (Wasicsko 1977). There is also great deliberation over whether or not dispositions can be taught, or if they are simply acquired (Cummins and Asempapa 2013). Many researchers, such as Combs and Wasicsko, have developed a series of assessment tools related to pre-service teacher professional dispositions. But again, the tools are contested due to their content, purpose, and validity. Given these debates, many teacher education programs such as that at UNC Asheville provide their own definitions of professional dispositions, and seek to combine formal assessment of them through the use of prescribed tools with performance-based assessment as candidates are engaged in authentic experiences. At UNC Asheville, candidates displaying professional dispositions to a satisfactory degree are defined within the following parameters:

Collaborative teachers who demonstrate awareness of and appreciation for the communities in which they teach and who foster mutually beneficial relationships with the community.

Responsible teachers who exemplify the skills, behaviors, dispositions, and responsibilities expected of members of the teaching profession.

Reflective teachers who maintain a commitment to excellence and to the continuous assessment, adaptation, and improvement of the teaching-learning process.

Humane teachers who value the dignity of every individual and foster a supportive climate of intellectual inquiry, passion for learning, and social justice.

The themes that emerged from the Service Learning Survey results, as described in the Key Findings, show that project participants gained knowledge and skills in the area of acquiring desirable professional dispositions, especially when analyzed in conjunction with participant reflections. For example, one participant noted:

This Science Olympiad experience confirms my compassion and love for children and desire for being a teacher even during some crazy days. It also confirms my desire to help them learn and discover new knowledge while becoming confident in their science skills. This learning experience was really cool to be a part of and I felt like I was doing something truly important to further children’s interest in science and education. I am happy and proud to say that I was able to participate in the Science Olympiad and confidently show the work that my fellow peers and I produced for such a well-known competition. I will always reflect on the experience as a future teacher and use it to influence my decisions as a teacher in a positive way.

The supposition of this researcher is that the field work in which participants were engaged, which can actually be defined as service learning, and the specific Service Learning activities in which they participated can set candidates on the path to civic engagement. Specific civic engagement elements that were realized include the fact that sustainable partnerships were developed, the work was mutually beneficial, and candidates learned to serve a diversity of children. Participants were able to realize the potential for forming partnerships to benefit their future classrooms.  One participant’s reflection showed this clearly, as the participant stated:

If implementation of my own Science Olympiad were not supported in my school or district, I could look to the community and to private industry for support. The concept of the Olympiad is valuable to fostering scientific education and to meeting the current and future needs of the world. Science is life and to neglect it in our children’s education and preparation for life is not an option.

In summary, education in Science, Technology, Engineering, and Math (STEM) competencies is a growing area in terms of career and workplace skills. Interest in this area has to be started in elementary schools in order to ensure that students are not only being introduced to science skills but are also actively engaged in scientific processes and engineering design cycles. The KIC and Science Olympiad were designed to support elementary science standards, and to assist teachers in fostering these skills in their students. The involvement of the pre-service teachers who served as participants in this study and created quality, age-appropriate science challenges for students, is helping to achieve these long-term goals for students and support STEM education.

ASCD (formerly the Association for Supervision and Curriculum Development) is one of the most prominent professional associations in the field of Education. ASCD provides resources, training, research, and programs that emphasize transformational leadership, global engagement, poverty and equity, redefining student success, and teaching and learning (ASCD 2016). “The ASCD defines citizenship as a concern for the rights, responsibilities, and tasks associated with governing. It identifies citizenship competencies as an important component of civic responsibility. These competencies include acquiring and using information, assessing involvement, making decisions and judgments, communicating, cooperating, promoting interests, assigning meaning, and applying citizenship competencies to new situations” (Constitutional Rights Foundation 2000, 4). The participants in this study were introduced to this information toward the beginning of the EDUC 322 course. Then, throughout the course, discussions were held and activities were completed related to teaching candidates how educating students in STEM areas as well as helping them understand the ethical use of science and scientific data are contributing to candidates’ and students’ citizenship, civic engagement, and civic responsibility—both through their current engagement with students and schools and in their future teaching careers. All of this discussion and activity completion is grounded in the framework of strategies for effectively teaching a diversity of students in the public school classroom according to STEM education principles. Additionally, the participants in this project were provided with a responsibility to both teach and learn within a service and civically engaging context. As a result, they were able to learn to teach using discovery, while engaging in discovery learning themselves. Given their self-reflections, it is evident that the participants are excited about and prepared for the prospects of related responsibilities in their future teaching. And, given the results of the measure of student learning, each group of participants is entering the classroom more prepared in terms of their content and pedagogical knowledge than the one before it.

About the Author

Kim Brown is an Associate Professor and the Chairperson of the Department of Education at the University of North Carolina Asheville.  Kim teaches numerous licensure courses, including Inquiry-Based Science Instruction for candidates seeking elementary licensure.  For her curricular and service work in this course, Kim was named a University SENCER Fellow.  Kim has been very involved in work related to the University of North Carolina Asheville’s liberal arts model, serving as the chairperson of the university’s Integrative Liberal Studies Oversight Committee and the university’s representative on the state-level General Education Council.  Kim was the university’s recipient of the 2014 Distinguished Service Award.

References

ASCD. 2016. “ASCD.” http://www.ascd.org/Default.aspx (accessed June 8, 2017).

Constitutional Rights Foundation. 2000. “Fostering Civic Responsibility through Service Learning.” Fostering Civic Responsibility 8 (1): 1–15.

Cummins, L., and B. Asempapa. 2013. “Fostering Teacher Candidate Dispositions in Teacher Education Programs.” Journal of the Scholarship of Teaching and Learning 13 (3): 99–119.

Davis, B.M., and D. Buttafuso. 1994. “A Case for the Small Liberal Arts Colleges and the Preparation of Teachers.” Journal of Teacher Education 45 (3): 229–235.

Wasicsko, M.M. 1977. Assessing Educator Dispositions: A Perceptual Psychological Approach. https://coehs.nku.edu/content/dam/coehs/docs/dispositions/resources/Manual103.pdf (accessed December 1, 2016).

Download (PDF, 320KB)

 

The Draw-an-Ecosystem Task as an Assessment Tool in Environmental Science Education

Robert M. Sanford, University of Southern Maine
Joseph K. Staples, University of Southern Maine
Sarah A. Snowman, University of Southern Maine

Introduction

Environmental science is a broad, interdisciplinary field integrating aspects of biology, chemistry, earth science, geology, and social sciences. Both holistic and reductionist, environmental science plays an increasing role in inquiry into the world around us and in efforts to manage society and promote sustainability. Mastery of basic science concepts and reasoning are therefore necessary for students to understand the interactions of different components in an environmental system.

How do we identify and assess the learning that occurs in introductory environmental science courses? How do we determine whether students understand the concept of biogeochemical cycling (or “nutrient cycling”) and know how to analyze it scientifically? Assessment of environmental science learning can be achieved through the use of pre- and post-testing, but of what type and nature?

Physics, chemistry, biology, and other disciplines have standardized pre- and post-tests, for example Energy Concept Inventory, Energy Concept Surveys; Force Concept Inventory (Hestenes et al. 1992); the Geoscience Content Inventory  (Libarkin and Anderson 2005); the Mechanics Baseline Test; Biology Attitudes, Skills, & Knowledge Survey (BASKS); and the Chemistry Concept Inventory (Banta et al. 1996; Walvoord and Anderson 1998). Broad science knowledge assessments also exist, notably the Views About Science Survey (Haloun and Hestenes 1998). Some academic institutions have developed their own general science literacy assessment tool for incoming freshmen (e.g., the University of Pennsylvania [Waldron et al. 2001]).  The literature abounds with information on science literacy. The American Association for the Advancement of Science (AAAS) and the National Science Teachers Association (NSTA) are leaders in developing benchmarks for scientific literacy (AAAS 1993; www.NSTA.org).

Perhaps the closest standardized testing instrument for environmental science is the Student Ecology Assessment (SEA). Lisowski and Disinger (1991) use SEA to focus on ecology concepts. The SEA consists of 40 items in eight concept clusters; items progress from concrete to abstract, from familiar to unfamiliar, and from fact-based (simple recall) to higher-order thinking questions. Although developed principally for testing understanding of trophic ecology (plant-animal feeding relationships), this instrument can be used in most ecology or environmental science classes, even though it does not address all aspects of environmental science (for example, earth science, waste management, public policy).

The Environmental Literacy Council provides an on-line test bank that can be used for assessment (http://www.enviroliteracy.org/article.php/580.html).  Results of this and other instruments suggest that the average person’s environmental knowledge is not as strong as he or she thinks (Robinson and Crowther 2001). Environmental knowledge assessment may help us to determine what additional learning needs to be done in creating an environmentally literate citizenry—an important public policy task (Bowers 1996).  However, a major reason for assessing environmental knowledge is to improve teaching. If we can assess how students conceptualize an ecosystem at the start of a course, then we can measure the difference at the end of the course. Additionally, understanding what knowledge they possess at the start of a course will help us expand their knowledge base in a manner tailored to their initial understandings and their needs.

The challenge lies in deriving a rapid assessment tool that will help determine abilities to conceptualize and that also has comparative and predictive value.  It is quite common in environmental science courses to ask students to draw an ecosystem—it can be done as an exam question, as homework, or as an in-class project.  Virtually all environmental science textbooks contain illustrations of ecosystems.  An environmental laboratory manual we frequently use (Wagner and Sanford 2010) asks students to draw an ecosystem diagram as one of the assignments. But what about examining how the students’ drawings illustrate growth in knowledge and understanding—their ability to use knowledge gained and to communicate ecological relationships in a model?  We needed an instrument that provided immediate information, could be contained on one page, would not take a lot of class time, and that did not look like a test. The draw-an-ecosystem instrument meets those criteria, but there is a price: the difficulty of quantifying and comparing the drawings. It seemed a worthwhile challenge to work those bugs out, and even if that proved to be impossible, the students themselves could see the increased ecological sophistication of their drawings and would experience positive feedback from the change.

The Draw-an-Ecosystem Approach

Figure 1: A representative ecosystem drawing from the first day of class

Our approach is to use a pre-test and post-test in which students draw and label an ecosystem, showing interactions, terms, and concepts (Figure 1 and Figure 2).  The assignment is open-ended. We hand out a page with a blank square on it and the following directions:

Date_______. Course ________. Please draw an ecosystem in the space below. It can be any ecosystem. Label ecosystem processes and concepts in your diagram. Take about 15 or 20 minutes. This will not be graded, it isn’t an art assignment, and the results will be kept anonymous.

We tried out this assessment in our graduate summer course in environmental science for sixth–eighth grade teachers (even short-term courses can produce a change in environmental knowledge according to Bogner and Wiseman [2004]) and in our Introduction to Environmental Science course.  We developed a rubric to evaluate and score the pre- and post-test ecosystem diagrams drawn by students.  The rubric included eight categories, each with a 0–3 score, where 0 represented no display of that category and 3 represents a comprehensive response. The categories, labeled A-H, cover ecosystem aspects (listed below). Certainly, not all eight categories are equal, nor should they be equally rated or represented; however, since we are examining pre- and post-course conceptualization of ecosystems, the comparative value of the scoring remains, and we decided it was reasonable to sum the category scores for a final score. Accordingly, the maximum possible score was 24. The scores were then compiled and analyzed to determine whether there was a statistically significant difference in pre- and post-test scoring.

Figure 2: Typical drawing of an ecosystem at the end of a semester-long environmental science course

To interpret the student ecosystem diagrams, we examine the following factors:

  • Presentation of the different spheres (hydrosphere, atmosphere, biosphere, geosphere, and cultural sphere)
  • Proportional representation of species and communities
  • Recognition of multiple forms of habitat and niche
  • Biodiversity
  • Exotic/invasive species
  • Terminology
  • Food chain/web
  • Recognition of scale (micro through macro)
  • Biogeochemical (nutrient) cycles
  • Earth system processes
  • Energy input and throughput
  • Positive and negative feedback mechanisms
  • Biological and abiotic interactions and exchanges
  • Driving forces for change and stability (dynamics)

Initially we used the above factors as a guide in interpreting the drawings and comparing the pre-test and post-test drawings for each student—we did not compare one student’s work with another. However, if the ecosystem test can become a valid and reliable standardized assessment, then comparison makes sense and will inform how an entire course makes a difference in student learning rather than just the progress of an individual student.  Accordingly, we developed a scoring rubric (Table 1).

In determining the categories and weights for each scoring rubric, we consulted three other environmental science faculty with experience in teaching an introductory environmental science course. We sought a scale for which both beginners and professionals would achieve measurably distinct scores. To ensure objectivity, we scored multiple examples before settling on the final rubric elements and weights.  This is similar to the norming approach used by the College Board in scoring Advanced Placement (AP) Environmental Science exams. The final scores reflect a student’s holistic understanding of ecosystems.  The maximum score for the pre- and post-test is the same, 3 points x 8 categories = 24.  Analysis of pre- and post-course test scores using a Student’s t-test for independence, with separate variance estimates for pre-test and post-test groups, was conducted using Statistica v.10 (StatSoft, Tulsa, OK).  Analysis revealed a significant enhancement of students’ abilities to communicate their understanding of ecological concepts (t = -10.77, df = 364, p < 0.001) (Figure 3).  We also tested the scoring system on a small group of workshop participants at the New England Environmental Education Alliance conference (October 2014). Participants included members of their state’s respective environmental education association, plus  a mixture of grade school teachers and non-formal educators (with environmental education equivalent to or higher than that achieved by the post-course group of students).  The scores by these educators averaged 13 and ranged between 10 and 15.

Figure 3: Draw-an-Ecosystem Rubric Test Scores. Average test scores with SE (bars) for freshmen/transfer undergraduate students in first semester Environmental Science. Pre-test (n=297, mean=4.7) and post-test (n=60, mean=8.6).

 

Discussion

The draw-an-ecosystem test provides an open-ended but structure-bounded means to gauge a person’s understanding about ecosystems. We measured change between the first week of a semester-long environmental science course (four credits of lecture and lab) and the last week. The change showed an approximate doubling of scores. The drawings provide clues to where the students are for their starting points and provide a way to indicate possible misconceptions about science or the environment—misconceptions that may need to be cleared up for proper learning. Thus, the drawings can be a useful diagnostic tool for both the student and the teacher. They may also give insight into geographical, cultural, or social biases. For example, many ecosystem drawings were of ponds, not surprising given the water-rich environment of Maine.  None of the over 300 drawings were of desert ecosystems, yet such might be conceptually more common for people from an arid region such as the Southwest.  Another aspect of the sample ecosystem drawings is that they tend to be common rather than exotic, leading one to wonder whether we care for what we do not know, or if perhaps the opposite is true—a “familiarity breeds contempt” scenario in which the vernacular environment is seen as less important due to its commonality. A related question is whether or not the ecosystems selected for portrayal change as a result of education. Not only might students think more deeply about ecosystems, but perhaps they are more aware of and value the greater variety of them.

Another benefit of the ecosystem drawing is that it adds another dimension to the learning process. It provides a different way of assimilating and processing information, although according to our sample, artists tend to score about the same as those with fewer artistic skills, suggesting that perhaps a drawing assignment validates their supposedly lesser artistic abilities. Certainly, an exercise that incorporates multiple modes of representation, expression, and engagement—such as drawing and writing—fits better with a Universal Design for Learning (UDL) approach; these modes are the three principles of UDL (Burgstahler and Cory 2008; Rose et al. 2005).

In the future, we may seek a way to reduce the large number of categories in the scoring system, especially if the test is to be used with younger age groups. We should also attain a more comprehensive method of assessing inter-rater agreement for scoring the drawings. We may also explore use of the ecosystem drawings as discussion starters for peer evaluation and collaborative learning. Ecosystem concepts seem to be a powerful way of capturing and reflecting student thinking about environmental settings as dynamic systems.

Acknowledgements

Maine Mathematics and Science Teaching Excellence Collaborative (MMSTEC), an NSF-funded program, inspired the initial idea of this paper. Professors Jeff Beaudry, Sarah Darhower, Bob Kuech, Travis Wagner, and Karen Wilson provided insight.

About the Authors

Robert M. Sanford is Professor and Chair of Environmental Science and Policy at the University of Southern Maine. He is a SENCER Fellow and a co-director of SCI New England.

Joseph K. Staples teaches in the Department of Environmental Science and Policy at the University of Southern Maine. He was recently appointed a SENCER Fellow.

Sarah A. Snowman works at L.L. Bean and is a recent graduate of the University of Southern Maine, where she majored in Business and minored in Environmental Sustainability.

References

American Association for the Advancement of Science (AAAS). 1993. Benchmarks for Scientific Literacy. Oxford: Oxford University Press.

Banta, T.W., J.P. Lund, K.E. Black, and Frances W. Oblander, eds. 1996. Assessment in Practice. San Francisco: Jossey-Bass Publishers.

Bogner, F.X., and M. Wiseman. 2004. “Outdoor Ecology Education and Pupils’ Environmental Perception in Preservation and Utilization.” Science Education International 15 (1): 27–48.

Bowers, C.A. 1996. “The Cultural Dimensions of Ecological Literacy.” Journal of Environmental Education 27 (2): 5–11.

Burgstahler, S.E., and R.C. Cory. 2008. Universal Design in Higher Education: From Principles to Practice. Cambridge, MA: Harvard Education Press.

Environmental Literacy Council. Environmental Science Testbank. http://www.enviroliteracy.org/article.php/580.html (accessed November 30, 2016).

Halloun, I., and D. Hestenes. 1998. “Interpreting VASS Dimensions and Profiles for Physics Students.” Science and Education 7 (6): 553–577.

Hestenes, D., M. Wells, and G. Swackhamer. 1992. “Force Concept Inventory.” The Physics Teacher 30: 141–158.

Libarkin, J.C., and S.W. Anderson. 2005. “Assessment of Learning in Entry-Level Geoscience Courses: Results from the Geoscience Concept Inventory.” Journal of Geoscience Education 53: 394–201.

Lisowski, M., and J.F. Disinger. 1991. “The Effect of Field-Based Instruction on Student Understandings of Ecological Concepts.” The Journal of Environmental Education 23 (1): 19–23.

Nuhfer, E.B., and D. Knipp. 2006. “The Use of a Knowledge Survey as an Indicator of Student Learning in an Introductory Biology Course.” Life Science Education 5 (4): 313–314.

Robinson, M., and D. Crowther. 2001. “Environmental Science Literacy in Science Education, Biology & Chemistry Majors.”   The American Biology Teacher 63 (1):9–14.

Rose, D.H., A. Meyer, and C. Hitchcock, eds. 2005. The Universally Designed Classroom: Accessible Curriculum and Digital Technologies. Cambridge, MA: Harvard University Press.

Maine Mathematics and Science Teaching Excellence Collaborative (MMSTEC). http://mmstec.umemat.maine.edu/MMSTEC/

Sexton, J.M., M. Viney, N. Kellogg, and P. Kennedy. 2005. “Alternative Assessment Method to Evaluate Middle and High School Teachers’ Understanding of Ecosystems.” Poster presented at the international conference for the Association for Education of Teachers in Science, Colorado Springs, CO.

Wagner, T., and R. Sanford. 2010. Environmental Science: Active Learning Laboratories and Applied Problem Sets. 2nd ed. New York: Wiley & Sons.

Waldron, I., K. Peterman, and P. Allison. 2001. Science Survey for Evaluating Scientific Literacy at the University Level. University of Pennsylvania. (http://www.sas.upenn.edu/faculty/Teaching_Resources/home/sci_literacy_survey.html).

Walvoord, B.E., and V.J. Anderson. 1998. Effective Grading: A Tool for Learning and Assessment. San Francisco: Jossey-Bass Publishers.

Download (PDF, 716KB)