Evaluating Knowledge Transfer after a Science Cafe: A Qualitative Approach for Rural Settings

Abstract

Science Cafés are informal community gatherings that aim to facilitate the engagement of scientific researchers with the general public.  These events have been implemented worldwide in rural and urban settings.  This article evaluates two Science Café series, held in rural Iowa communities.  Evaluation of Science Cafés typically consists of participant surveys to measure satisfaction with the presenter, interest in the topic, or solicit topic suggestions for future events.  This paper presents results from a qualitative evaluation that aimed to better understand how the information presented at Science Cafés was shared with others in the community following the event.  Results suggest that participants share information in both formal and informal settings following a Science Café, especially those who self-identify as “champions” of an issue. This research suggests that future evaluations examine rural social networks to better understand the broader community impact of these events.

Introduction

Science Cafés are informal community gatherings that aim to facilitate the engagement of scientific researchers with the general public.  These events have been implemented worldwide in rural and urban settings. The University of Iowa’s Environmental Health Sciences Research Center (EHSRC) has hosted Science Cafés since 2013, mostly in rural communities in Iowa.  Evaluation of Science Cafés typically consists of participant surveys to measure satisfaction with the presenter and interest in the topic or to solicit topic suggestions for future events.  This paper presents results from a qualitative evaluation that aimed to better understand how the information presented at Science Cafés was shared with others in the community following the event.  

Background

Science Cafés are casual events designed to engage members of the public with science and scientists. These interactive gatherings can be in a coffee house, bar, library, or community space. They typically involve a presentation by one or more speakers with a scientific research background, followed by a group discussion and questions (NOVA Education, 2020). The bi-directional communication, in which audience members discuss the topic and pose questions, allows researchers to learn about public perceptions, concerns, and curiosity for their area of expertise. The community benefits from participation as they learn about science in their everyday lives and see the value of research and STEM (S. Ahmed, DeFino, Connors, Kissack, & Franco, 2014; S. M. Ahmed et al., 2017). Science Café events should emphasize “participation” over “popularization,” to better “demythologize science communication, bringing it out of the cathedra and into everyday life” (Bagnoli & Pacini, 2011). Science Café events are held across the globe and many are now recorded and posted online so that they are broadly accessible to the general public. 

The first Science Café was held in 1997 at a wine bar in Leeds, England and was modeled after the the French Cafés Philosophiques, forums held in cafés to discuss philosophical issues (Nielsen, Balling, Hope, & Nakamura, 2015). This format of gathering in a public space to socialize and discuss science has been adopted all over the world in a somewhat grassroots fashion (NOVA Education, 2020). A Science Café is one model of scientific communication with the public that encourages public participation and exploration of emerging issues in medicine, science, technology, the environment, and globalization. The global nature of the Science Café movement is “part of a wider participatory trend” that aims to engage the public with the processes of science (Nielsen et al., 2015, p. 15).  However, events are also “adapted to local contexts” to shape and define forms of interactions and dialogue between scientists and their immediate constituencies (Nielsen et al., 2015, p. 3).

Evaluation is a standard component of Science Café events, consisting primarily of participant satisfaction surveys (Einbinder, 2013).  Researchers have found that the events are effective at encouraging the discussion of scientific issues among members of the public (Navid & Einsiedel, 2012), including among youth (Hall, Foutz, & Mayhew, 2013; Mayhew & Hall, 2012).  The Clinical and Translational Science Institute of SE Wisconsin also evaluated the impact of attendees’ understanding of health and scientific information using a Likert scale assessment of participants’ reported level of confidence across a five-item instrument. They found that attending a Café increased participants’ confidence in health and scientific literacy (S. Ahmed et al., 2014).  In addition, Science Cafés are seen as a mechanism to improve the ability of scientists to communicate with the public by providing an opportunity to practice explaining scientific concepts to a general audience (Goldina & Weeks, 2014).  This is particularly important for those scientists who may see public engagement as “troublesome or time-consuming” (Mizumachi, Matsuda, Kano, Kawakami, & Kato, 2011).  One key challenge of evaluating Science Cafés, or other “dialogue events” aimed at increasing public engagement with science, is understanding the extent to which they increase individual participants’ knowledge about scientific concepts (Lehr et al., 2007). Furthermore, Science Café events may hold greater value as interactions that broadly improve relationships between scientists and society through accessible engagement, rather than serving merely as a mechanism to teach specific ideas, such as in formal scientific lectures or courses (Dijkstra, 2017).

Public Health in Rural Settings

In the US, rural communities disproportionately suffer from a number of adverse health outcomes, including higher rates of obesity and earlier mortality, as well as higher rates of smoking and lower physical activity than their urban counterparts (Garcia et al., 2017; Matthews et al., 2017). Further, recruiting and retaining health care personnel is difficult in rural areas (Asghari et al., 2019; Lafortune & Gustafson, 2019; Thill, Pettersen, & Erickson, 2019) In addition to addressing structural and geographic disparities in rural areas, the social context must also be considered when delivering effective public health interventions in these settings (Gilbert, Laroche, Wallace, Parker, & Curry, 2018).   Factors including demographic shifts due to immigration (Nelson & Marston, 2020), poverty (Thurlow, Dorosh, & Davis, 2019), and the necessary engagement of rural residents with extractive industries, such as agriculture or mining (Kulcsar, Selfa, & Bain, 2016), also contribute to health disparities and require interventions that take into account the social and cultural components unique to rural communities. 

There has long been an understanding that social networks may be associated with mortality risk (Berkman, 1986) and spread of disease (Bates, Trostle, Cevallos, Hubbard, & Eisenberg, 2007), but they may also provide a framework for behavioral interventions (Eng, 1993; Yun, Kang, Lim, Oh, & Son, 2010). In addition, social transmission of knowledge has been documented in relation to ethnobotanical knowledge (Lozada, Ladio, & Weigandt, 2006; Yates & Ramírez-Sosa, 2004) and agricultural practices and innovations (Flachs, 2017; Stone, 2004).  Despite this, evaluations of public health or science-related events do not regularly assess the potential for knowledge dissemination by participants following the event’s occurrence.  Our evaluation aimed to understand the potential for knowledge transmiss

Analysis

To evaluate the UE program, we employed a simple pre-post-intervention task. As previously stated, on the first day of the program we asked each student to draw a picture that reflected what they thought about when hearing the term “nature.” We created inventories according to items represented (Sanford, Staples, &. Snowman, 2017; Flowers, Carroll, Green, & Larson, 2015). We repeated this task on the last day of the program before the students were dismissed. Because of unforeseen time constraints (see Limitations, below), we provided students with just five minutes to complete the post-program drawings. We chose to employ this evaluation method after speaking with a school liaison, who expressed concern about the ability of these children to express their opinions in written form. This type of evaluation has been successfully employed with children through eighth grade (Sanford et al., 2017).

Using an emergent thematic coding analysis, researchers analyzed each drawing and developed codes to compare pre-program drawings to post-program drawings in order to determine whether the intervention changed perceptions of what “nature” means to the students. Because of the small sample size (n = 20), each researcher coded all drawings, and the group worked together to reach full agreement. To determine statistical significance, we used a chi-square analysis.

Research Setting

At the University of Iowa, the NIEHS-funded Core Center, the Environmental Health Sciences Research Center (EHSRC), and the Institute for Clinical and Translational Science (ICTS) have been organizing Science Cafés since 2013 in various small Iowa towns, most consistently focusing on two communities.  Community One, a town of 4,435 residents with a small liberal arts college, and Community Two, a slightly larger town, with 10,420 residents and an alternative business school. Both communities also have a robust agricultural economy that includes produce, livestock, and grain farmers.  The Science Café events involve one presenter, usually a researcher or faculty member from the University of Iowa, and the coordinating staff from the EHSRC.  The researcher delivers a presentation about 20–30 minutes in length, followed by questions from the audience and discussion.  There are no Powerpoint or other slide shows; however, in some cases the presenter may put together a handout that includes two or three slides or graphics with main points from the presentation.  Because the events are meant to allow considerable time for discussion and questions from the audience, there are no formal learning objectives or knowledge tests for participants. Most presentations reflect the environmental health focus of the EHSRC.  However, the standard evaluation questionnaire distributed after each event solicits suggestions for additional topics from the participants; these topics are then prioritized for future events.  Participant suggestions have led to presentations on topics such as wolf habitat in the Midwest, obesity, and healthy sleep habits.

The Science Café location in Community One is a local coffee shop in the center of town, while in Community Two it is the public library. Both of these venues have strong relationships with the EHSRC and support the events by posting flyers for upcoming Cafés. The library in Community Two includes the events on their programming calendar, sends out announcements via Listserv, and sometimes sends press releases to the local paper. The EHSRC regularly advertises in the local paper of Community One. The age of the attendees varies from college students to elder retirees, with retirees being the largest group of consistent participants. There is a core group of about eight participants in each community who attend all of the Cafés, while other attendees vary based on the topic. 

This paper presents a novel evaluation of the EHSRC Science Cafés by examining the extent to which participants share what they learned with others. Rather than simply assessing how satisfied or interested participants were in the topic, or assessing individual knowledge, this evaluation seeks to better understand how information travels through communities and social networks, recognizing the importance of social networks as described above, and the implications for broader scientific literacy and environmental health literacy. Given the rural context of the EHSRC Science Cafés, this paper reflects on the implications of knowledge sharing in the rural landscape. 

Methods

In the spring of 2019, the EHSRC Community Engagement Core (CEC) staff added several questions to the standard written evaluation that is administered after each Science Café.  In addition to asking participants about how far they traveled for the Science Café, how they learned about the event, examples of what they learned during the Café, and to rate their level of satisfaction with the content, participants were asked, “Do you plan to share this information with friends, family, or others?  If so, how will you share?”  The evaluation also asked if we could follow up with a phone interview in the future.  These additional questions were posed at all six Science Café events in spring 2019. The project description was submitted to the University of Iowa’s Institutional Review Board, where it was deemed not to fit the criteria for human subjects’ research. This work was funded by the National Institute of Environmental Health Sciences, P30 ES005605.

A 13-question instrument was designed for use via Computer Assisted Telephone Interview (CATI) system.  Science Café participants who had indicated their willingness to be interviewed provided their phone numbers on the evaluations and were contacted within two weeks of the Science Café event.  The interview reminded participants of their response to the original question, “Do you plan to share this information with friends, family, or others? If so, how will you share?” and asked whether they had in fact shared information from the Science Café and with whom and how they shared it.  In addition, participants were asked to describe any other instances when they shared information from any Science Café and who in their communities they felt would most benefit from attending Science Café events.

Interviews were conducted by trained interviewers at the Iowa Social Science Research Center on the campus of the University of Iowa.  The CATI system allows for interviews to be transcribed as they are conducted. Following the interviews, written transcriptions were provided to the research team for analysis.  

The interview transcripts were coded using both deductive and inductive approaches.  The research team read the transcripts and developed an initial set of deductive codes based on the categories of people with whom information was shared:  friends/family, social group, professional contacts.  A second round of inductive coding generated novel codes from the data and illuminated concepts specific to the population and conditions under which information was shared (e.g. agricultural occupations or cancer survivor) (Legard, Keegan, & Ward, 2003).   

Research

Science Café Attendance

In spring 2019, attendance at the Science Cafés ranged from eight to 31 participants (see Table 1).  Travel to the events ranged from less than one mile up to 35 miles (one attendee in Community One) with most attendees traveling one mile or less to attend. This suggests the audience for Science Cafés is mostly local residents.  In both communities, the highest proportion of attendees report that they are “retired” or “semi-retired”: 38% (n= 12) in Community One and 32% (n= 14) in Community Two.  Other occupations identified include farmer, educator, student, medical professional, and self-employed person.

Results from Written Evaluations

Over the course of three Science Cafés in Community One, we received 32 evaluations from a total of 66 participants.  In Community Two, we received 44 evaluations from 73 participants.  In this paper, we have combined all evaluation results to present the results across both communities.  

In response to the question “Do you plan to share this information with friends, family or others?” 56 respondents indicated “yes,” nine indicated “no,” and 11 did not respond to the question.  The majority of respondents (33) who said “yes,” indicated that they would do so through conversations with family or friends.  Others also indicated social media (two), email (six), and by sharing “notes” (five).  Four indicated they would share through a community group or organization (see Figure 1).  

The written evaluation also included a question asking for examples of something the participants learned.  Among the responses to this open-ended question were some very specific items, such as “how to count pollen + p2.5-p10 measurements + pollen fragments” following a presentation on air pollution, to more general statements or perceptions of the content.  Following a presentation on Iowa agriculture, one participant wrote, “I loved being reminded that conventional ag and diversified small ag are a venn [sic] diagram and have things in common” and another wrote, “intersection of local and global ag in formal and informal ways.” After a presentation on air quality, someone responded: “I learned about air control.” 

Results from Interviews

Over the course of the spring 2019 Science Café events, 26 indicated on their evaluation form that they were willing to be interviewed. Of those, we were able to contact and interview 18 individuals, ten women and eight men.  Given the relatively narrow focus of the interview guide, this number should be sufficient to reach saturation, the point at which no new themes emerge from the data (Guest, Bunce, & Johnson, 2006).

Consistent with the responses in the initial evaluations, most participants shared information in conversations with family or friends:

  • I have a friend that I get together with once a week and we chat. We were at lunch and I talked about how Iowa is one of the worst states for cancer. We are also the best research state for cancer, I was kind of bragging on us. (Participant #4)
  • I talked about it by word of mouth to a ton of people (Participant #8)
  • The bottom line for the lecture after going through many ideas is that the future is solar, and I had a friend who asked me about it and I told him that. (Participant #17)
  • I have a friend in Cedar Rapids that I have shared the information with (Participant #15)

Others indicated that they shared information strategically with family or friends who might be particularly interested in it or benefit from it.  In some cases, the information was directed at someone who lacked knowledge about the topic: “It was a casual conversation with a friend we were talking about. She’s new to being in a rural area which brought up the different types of agriculture with which she wasn’t familiar with and I was able to share” (Participant #10). 

Conversely, information was shared with people who had very specific knowledge of the topic, such as in the case of a cancer survivor or someone remediating mold in a home:

  • I shared some points with my mother who is a cancer survivor (Participant #13)
  • We were cleaning a house because it was dusty and the new occupants, one of them, has a dust allergy, and I said I was just at the Science Café on air quality and the question was “What is one thing we can do ourselves on air quality?” and the teacher said basement mold and the person I was talking to said the moldy basement was a bigger issue than the dust and I was able to confirm what they said with the advice of an expert. (Participant #26)

Others noted that the topic was relevant to their professional life and so they discussed it with colleagues in a professional capacity.  In this context, student status is considered a professional setting:

  • I brought it up in class and told them what it was about. (Participant #8)
  • Since I’m a farmer I’ll sometimes relate something that came out of there to someone else in the same profession. (Participant #11)
  • Friends who are water quality testers like me, we all agreed that we need to be referencing data and all of us generally agreed that this ups the game of water quality of Iowa and is the proof that we need to show that we have to turn things around. (Participant #16)
  • Finally, a couple of respondents referenced formal social or community groups that they shared information with:  
  • [with] the breakfast club…I told it to my husband, my friends at the book club, and several other people. (Participant #5)
  • I work with the local Sierra Club so it was an interesting background to have. (Participant #21)

In some cases, respondents referenced their own reputations or positions within the community, indicating that the Science Café information provided additional weight or legitimacy to areas of concern that they have been known to discuss:

  • Informally as always. They’re used to me talking about local ag at this point. (Participant #14)
  • It was about agriculture and I am a farmer so it is my life. (Participant #9)
  • I talk about it in my community and how we can implement it in our community. I also talk about compost and trash a lot so I might be a little excited about it. (Participant #14)

Most respondents indicated that they shared information verbally or through casual conversations.  A few, however, noted that they shared information via written notes, video, or online mechanisms:

  • I take notes and I give the whole thing to my husband and my friends. (Participant #5)
  • Well that is odd that you called because just an hour ago I was talking to someone about it. The fellow had a graphic on the information. It turns out the 5,000 pigs put out the sewage amount of 20,000 people. I’m going to take the map that he showed and make it a poster size and put it around town so that people see it because they need to. (Participant #20)
  • A friend put a video that I made up on a forum. I didn’t spread it but she did. (Participant #20)

Discussion

These results shed light on the diversity of social settings and groups that individuals in small rural communities may encounter and engage with.  One challenge of conducting community outreach or participatory research in rural communities is that low populations make it difficult to generate impactful numbers of participants or attendees at events.  However, responses indicated a wide number of settings, both formal and informal, in which information was shared.  These included book clubs, breakfast clubs, the local Sierra Club chapter, and with family members, fellow students, and colleagues.  In some cases, participants sought out individuals who they knew would be interested in the information (e.g., a parent who is a cancer survivor). In other cases, interview respondents indicated that they were asked about the event, or the topic came up, and they had information to share.  

Notably, the content gleaned from Science Café events provided legitimacy and evidence for several participants in their interactions, particularly in formal settings such as the workplace or a community organization.  For example, content from a water quality event generated a longer discussion among community water testers about the importance of good data and evidence in water quality discussions.  In other contexts, such as cancer-related research, the Science Café material provided information about resources in Iowa, allowing the participant to “brag” about research productivity in the state.  Knowledge sharing among social networks can be an important conduit for information transmission, particularly in rural areas (Burch, 2007; Mtega et al., 2013).  Even relatively small events like these Science Cafés can enhance knowledge in formal settings, broadening the initial reach of the event and informing professional networks as well as informal social groups.

In addition, several participants indicated that they are known for being interested in a topic, as evidenced by comments such as “I talk about composting and trash a lot” and “They’re used to me talking about local ag” as well as “I am a farmer, so it’s my life.” The literature related to program development in sustainable food systems suggests that many new endeavors are initiated by “champions” who engage with the community and promote their cause (Bagdonis, Hinrichs, & Schafft, 2008).  Likewise, other evaluation strategies have examined the qualities of people who support initiatives in quality improvement (Demes et al., 2020). Recognizing that these highly engaged “champions” may participate in other events, gleaning information and resources to pass along in other settings, is a potentially new way to think about how content from a Science Café event might reach additional community members.  Future evaluations in these communities could include social network analysis or mapping to better understand the social and professional channels through which information may be distributed (Wasserman & Faust, 1994).

While most participants shared information verbally by reporting that they described the content of the Science Café to others, some developed additional materials or used other media.  One participant stated that they took written notes, which they shared, and another described developing posters and videos for distribution. This was an unexpected product and suggests there may be additional opportunities to engage with Science Café participants to co-develop products or materials related to the events’ content.  Providing content in a way that participants can reproduce and share, such as an electronic version of the standard handout or graphics, could further encourage participants to develop follow-up materials after the event.

In this small study, respondents’ diverse reports of what they learned, in conjunction with the wide array of approaches to sharing information, suggest that Science Cafés may serve as more than simply sites where the public learns about scientific concepts. Among participants in this study, some were inspired or reminded about the intersections between systems (such as conventional and alternative agriculture), some became excited about, and advocates for, cutting-edge cancer research in their communities, or they used the content to champion projects in local organizations.  When viewed from this perspective, Science Cafés have a great deal of potential to improve the relationships between scientists and society. This study contributes a new approach for evaluating Science Café events.  Future research could link pre-determined learning objectives with an evaluation of how those objectives are communicated more broadly.

Conclusion

This study suggests that evaluating small events in rural communities can benefit from learning not only who attends and their levels of satisfaction, but also how they may recount and communicate the information they learn with their social and professional networks.  Recognizing that participants may be leaders in local groups, champions for causes, or may glean information that is particularly relevant for a friend or family member can help organizers develop programming that can be tailored to and/or shared in a variety of media.  In addition, being attentive to those who are motivated to develop additional outputs, such as posters or video, can help organizers expand the reach of what is otherwise a relatively small event.  Understanding how science may be communicated via social networks can assist in developing programs with the potential to have a broad community impact, beyond the setting of one individual event.

About the Authors

Jacqueline Curnick is the Program Coordinator of the Environmental Health Sciences Research Center Community Engagement Core at the University of Iowa. She holds a Master of Sustainable Development Practice with a focus in environmental communication. 

 

Brandi Janssen is a Clinical Associate Professor of Occupational and Environmental Health at the University of Iowa. She directs Iowa’s center for Agricultural Safety and Health (I-CASH) and the Community Engagement Core for the Environmental Health Sciences Research Center (EHSRC).

References

Ahmed, S., DeFino, M. C., Connors, E. R., Kissack, A., & Franco, Z. (2014). Science cafés: Engaging scientists and community through health and science dialogue. Clinical and Translational Science, 7(3), 196–200. doi:10.1111/cts.12153

Ahmed, S. M., DeFino, M., Connors, E., Visotcky, A., Kissack, A., & Franco, Z. (2017). Science cafés: Transforming citizens to scientific citizens—What influences participants’ perceived change in health and scientific literacy? Journal of Clinical and Translational Science, 1(2), 129–134. doi:10.1017/cts.2016.24

Asghari, S., Kirkland, M. C., Blackmore, J., Boyd, S. E., Farrell, A., Rourke, J., . . . Walczak, A. (2019). A systematic review of reviews: Recruitment and retention of rural family physicians. Canadian Journal of Rural Medicine, 25(1), 20–30. 

Bagdonis, J. M., Hinrichs, C. C., & Schafft, K. A. (2008). The emergence and framing of farm-to-school initiatives: Civic engagement, health and local agriculture. Agriculture and Human Values, 26(1–2), 107–119. doi:10.1007/s10460-008-9173-6

Bagnoli, F., & Pacini, G. (2011). Sipping science in a café. Procedia Computer Science, 7, 194–196. 

Bates, S. J., Trostle, J., Cevallos, W. T., Hubbard, A., & Eisenberg, J. N. (2007). Relating diarrheal disease to social networks and the geographic configuration of communities in rural Ecuador. American Journal of Epidemiology, 166(9), 1088–1095. 

Berkman, L. F. (1986). Social networks, support, and health: Taking the next step forward. American Journal of Epidemiology, 123(4), 559–562. 

Burch, S. (2007). Knowledge sharing for rural development: Challenges, experiences and methods. Quito: Agencia Latinoamericana de Información (Latin American Information Agency). Retrieved from https://www.alainet.org/sites/default/files/tss%20ingles.pdf

Demes, J. A. E., Nickerson, N., Farand, L., Montekio, V. B., Torres, P., Dube, J. G., . . . Jasmin, E. R. (2020). What are the characteristics of the champion that influence the implementation of quality improvement programs? Evaluation and Program Planning, 80, 101795. doi:https://doi.org/10.1016/j.evalprogplan.2020.101795

Dijkstra, A. (2017). Analysing Dutch science cafés to better understand the science-society relationship. Journal of Science Communication, 16(1), A03. 

Einbinder, A. (2013). Understanding the popular Science Café experience using the excellent judges framework. ILR, 6. 

Eng, E. (1993). The Save our Sisters Project. A social network strategy for reaching rural black women. Cancer, 72(S3), 1071-1077. 

Flachs, A. (2017). “Show Farmers”: Transformation and performance in Telangana, India. Culture, Agriculture, Food and Environment, 39(1), 2–34. doi:10.1111/cuag.12085

Garcia, M., Faul, M., Massetti, G., Thomas, C. C., Hong, Y., Bauer, U. E., & Iademarco, M. F. (2017). Reducing potentially excess deaths from the five leading causes of death in the rural United States. Morbidity and Mortality Weekly Report, 66(2), 1–7. 

Gilbert, P. A., Laroche, H. H., Wallace, R. B., Parker, E. A., & Curry, S. J. (2018). Extending work on rural health disparities: A commentary on Matthews and colleagues’ report. The Journal of Rural Health, 34(2), 119–121. doi:10.1111/jrh.12241

Goldina, A., & Weeks, O. I. (2014). Science Café course: An innovative means of improving communication skills of undergraduate biology majors. Journal of Microbiology & Biology Education, 15(1), 13–17. 

Guest, G., Bunce, A., & Johnson, L. (2006). How many interviews are enough?: An experiment with data saturation and variability. Field Methods, 18(1), 59–82. doi:10.1177/1525822×05279903

Hall, M. K., Foutz, S., & Mayhew, M. A. (2013). Design and impacts of a youth-directed Café Scientifique program. International Journal of Science Education, Part B, 3(2), 175–198. doi:10.1080/21548455.2012.715780

Kulcsar, L. J., Selfa, T., & Bain, C. M. (2016). Privileged access and rural vulnerabilities: Examining social and environmental exploitation in bioenergy development in the American Midwest. Journal of Rural Studies, 47, 291–299. doi:https://doi.org/10.1016/j.jrurstud.2016.01.008

Lafortune, C., & Gustafson, J. (2019). Interventions to improve recruitment and retention of physicians in rural and remote Canada: A systematic review. University of Western Ontario Medical Journal 88(1). 

Legard, R., Keegan, J., & Ward, K. (2003). In-depth interviews. In J. Richie & J. Lewis (Eds.), Qualitative research practice (pp. 139–168). London: Sage Publishing.

Lehr, J. L., McCallie, E., Davies, S. R., Caron, B. R., Gammon, B., & Duensing, S. (2007). The value of “dialogue events” as sites of learning: An exploration of research and evaluation frameworks. International Journal of Science Education, 29(12), 1467–1487. 

Lozada, M., Ladio, A., & Weigandt, M. (2006). Cultural transmission of ethnobotanical knowledge in a rural community of northwestern Patagonia, Argentina. Economic Botany, 60(4), 374–385. 

Matthews, K. A., Croft, J. B., Liu, Y., Lu, H., Kanny, D., Wheaton, A. G., . . . Holt, J. B. (2017). Health-related behaviors by urban-rural county classification—United States, 2013. MMWR Surveillance Summaries, 66(5), 1. 

Mayhew, M. A., & Hall, M. K. (2012). Science communication in a Café Scientifique for high school teens. Science Communication, 34(4), 546–554. doi:10.1177/1075547012444790

Mizumachi, E., Matsuda, K., Kano, K., Kawakami, M., & Kato, K. (2011). Scientists’ attitudes toward a dialogue with the public: A study using “science cafes.” Journal of Science Communication, 10(4), A02. 

Mtega, W. P., Dulle, F., Benard, R., Mtega, W., Dulle, F., & Benard, R. (2013). Understanding the knowledge sharing process among rural communities in Tanzania: A review of selected studies. Knowledge Management and E-Learning: An International Journal, 5(2), 205–217.

Navid, E. L., & Einsiedel, E. F. (2012). Synthetic biology in the Science Café: What have we learned about public engagement? Journal of Science Communication, 11(4), A02. 

Nelson, K. A., & Marston, C. (2020). Refugee migration histories in a meatpacking town: Blurring the line between primary and secondary migration. Journal of International Migration and Integration, 21(1), 77–91. 

Nielsen, K. H., Balling, G., Hope, T., & Nakamura, M. (2015). Sipping science: The interpretative flexibility of science cafés in Denmark and Japan. East Asian Science, Technology and Society: An International Journal, 9(1), 1–21.

NOVA Education.  (2020). Science Cafés 101. Retrieved from www.sciencecafes.org

Stone, G. D. (2004). Biotechnology and the political ecology of information in India. Human Organization, 63(2), 127–140. 

Thill, N., Pettersen, L., & Erickson, A. (2019). A reality tour in rural and public health nursing. Online Journal of Rural Nursing & Health Care, 19(1). 

Thurlow, J., Dorosh, P., & Davis, B. (2019). Demographic change, agriculture, and rural poverty. In C. Campanhola & S. Pandey (Eds.), Sustainable food and agriculture: An integrated approach (pp. 31–53). London: Academic Press.

Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. In M. Granovetter (Gen. Ed.), Structural analysis in the social sciences: Vol. 8. Cambridge: Cambridge University Press.

Yates, S., & Ramírez-Sosa, C. R. (2004). Ethnobotanical knowledge of Brosimum alicastrum (Moraceae) among urban and rural El  Salvadorian adolescents. Economic Botany, 58(1), 72–77. 

Yun, E. H., Kang, Y. H., Lim, M. K., Oh, J.-K., & Son, J. M. (2010). The role of social support and social networks in smoking behavior among middle and older aged people in rural areas of South Korea: A cross-sectional study. BMC Public Health, 10(1), 78. 

 

Appendix A

Science Café Evaluation Questions

1. Name

2. Profession

3. Email

4. Are you already on the mailing list? 

5. Are you willing to be contacted via phone for a brief interview? If so, please list phone number.

6. How did you learn about the event? 

  • Email from school/professor
  • Flyer
  • Newspaper
  • Email list from EHSRC
  • Other (please describe)

7. Please rate the following as excellent, good, fair, or poor: 

  • Presentation
  • Group discussion

8. Examples of something you learned: 

9. Do you plan to share this information with friends, family, or others? If so, how will you share?

10. Are there any topics you would like to learn about in a future Science Café?

11. Do you have any suggestions for how we can improve the Science Café?

Appendix B

Phone Interview Questions

Hello, may I speak with (first name, last name)? This is __ calling from the University of Iowa, and you are being contacted because you had previously indicated at a recent Science Café event that you were willing to be interviewed. 

On the evaluation form at the most recent Science Café you attended, we asked you:   Do you plan to share this information with friends, family, or others? If so, how will you share?

You responded:  SOME FORM OF YES 

1. Why did you indicate you would share information? For example, it was interesting, relevant, important, you had someone in mind, etc. 

2. Did you discuss the information you learned at the Science Café in person, by email, or by telephone with anyone? Answer options: Yes, No, I don’t know/remember, Refused (If no, go to question 6)

3. How many people?

4. Can you describe that interaction or discussion?

5. What was the outcome of the interaction? For example, did the person indicate interest, say they learned something new, disagree or take issue with the information?

6. (If answered no to question 2) Why have you not talked about the Science Café with anyone? For example, you didn’t think of it, it wasn’t important information, you are not comfortable sharing, etc. 

7. (If answered no to question 2) Do you think you’ll talk about it in the future?

FOR ALL: Now I’d like to ask you about the Science Cafés in general.

8. About how many Science Café events have you attended?

9. Have you ever talked about past Science Café content with friends, coworkers, or family members following the event? Answer options: Yes, No, I don’t know/remember, Refused (If no, go to question 12) 

10. Can you tell me about or describe a conversation you’ve had with friends, coworkers, or family members about a Science Café? 

11. Do you think the information you shared was new to the person or people you spoke with?

12. (If answered no to question 9) Why have you not talked about the Science Café with anyone? For example, you didn’t think of it, it wasn’t important information, you are not comfortable sharing, etc. 

13. Who in your community would most benefit from the information shared during Science Café events?

On the evaluation form at the most recent Science Café you attended, we asked you:   Do you plan to share this information with friends, family, or others? If so, how will you share?

You responded:  SOME FORM OF NO

1. Why did you indicate you would not share the information? For example, not interesting, relevant, important, no one to share with, etc. 

2. Did you discuss the information you learned at the Science Café with anyone? Answer options: Yes, No, I don’t know/remember, Refused (If no, go to question 8)

3. How many people?

4. Can you describe that interaction/discussion?

5. Did you communicate about the Science Café by email  or telephone with anyone?

6. Can you describe that interaction?

7. What was the outcome of the interaction? Did the person indicate interest, say they learned something new, disagree or take issue with the information? (Go to question 9)

8. (If answered no to question 2) Why have you not talked about the Science Café? For example, didn’t think of it, wasn’t important information, not comfortable sharing. 

9. Do you think you’ll talk about it in the future?

FOR ALL: Now I’d like to ask you about the Science Cafés in general.

10. About how many Science Café events have you attended?

11. Have you ever talked about past Science Café content with friends, coworkers, or family members following the event? (If no, go to question 14) 

12.  Can you tell me about or describe a conversation you’ve had with friends, coworkers, or family members about a Science Café?

13. Do you think the information you shared was new to the person or people you spoke with? (Go to question 15) 

14. (If answered no to question 11) Why have you not talked about the Science Café? For example, didn’t think of it, wasn’t important information, not comfortable sharing. 

15. Who in your community would most benefit from the information shared during Science Café events?

For those who responded:  UNSURE OR BLANK

Intro language—they are being called because they indicated at a recent Science Café event that they were willing to be interviewed.

You recently attended a Science Café presentation, 

1. Did you discuss the information you learned at the science cafe with anyone? (If no, go to question 7) 

2. How many people?

3. Can you describe that interaction/discussion?

4. Did you communicate about the Science Café by email or telephone with anyone?

5. Can you describe that interaction?

6. What was the outcome of the interaction? Did the person indicate interest, say they learned something new, disagree or take issue with the information? (Go to question 8) 

7. (If answered no to question 1) Why have you not talked about the Science Café? For example, didn’t think of it, wasn’t important information, not comfortable sharing. 

8. Do you think you’ll talk about it in the future?

FOR ALL: Now I’d like to ask you about the Science Cafés in general.

9. About how many Science Café events have you attended?

10. Have you ever talked about past Science Café content with friends, coworkers, or family members following the event? (If no, go to question 13) 

11.  Can you tell me about/describe a conversation you’ve had with friends, coworkers, or family members about a Science Café? 

12. Do you think the information you shared was new to the person or people you spoke with? (Go to question 14) 

13. (If answered no to question 10) Why have you not talked about the Science Café? For example, didn’t think of it, wasn’t important information, not comfortable sharing. 

14. Who in your community would most benefit from the information shared during Science Café events?

 

Download the article

Download (PDF, 3.81MB)

 

A Community Outreach Chemistry Lab Success in a Pandemic

Abstract

This project report highlights a simple yet effective outreach lab benefiting the community partner, specifically the Alameda Point Collaborative (APC) youth program and Saint Mary’s College students in a general science course. Building on a partnership focused on reciprocity, a portable lab experiment (Mattson Microscale Gas Chemistry lab) was proposed.  Given the pandemic, the major challenge was working through how to incorporate the community engagement without being physically present at APC.  To address this, the Saint Mary’s students created an instructional video to be viewed in advance of the activity as a replacement for the formal lab handout, which allowed us to participate without being onsite.  With the lab chemicals and materials delivered in advance, APC staff did a pilot run to facilitate a more successful joint lab. When both populations (APC youth and SMC students) met through a Zoom meeting, the lab resulted in a successful experiment and a shared learning experience.  This lab experience raised everyone’s spirits even during the pandemic.  In this report, the two authors provide reflections on the student gains and wish to emphasize that civic learning can still occur even in a pandemic. 

Introduction

Can one really do a community outreach chemistry lab during a pandemic?  How can college students be truly involved and engaged performing outreach when their classes are taught remotely?  Can a community partner feel supported when colleges keep pressing onward in the midst of the pandemic?

The students in a Saint Mary’s College environmental science course and their stalwart community partner, the Alameda Point Collaborative (APC) ventured together to answer the three questions above and continue a partnership where reciprocity has always been a focal point.  The Urban Environmental Issues (UrbanE) course had previously done educational outreach lab work with APC, but because of the pandemic, it needed to be done remotely.   This project report discusses their shared laboratory experience.   

The UrbanE class studies environmental chemistry issues and investigates the redevelopment of Alameda Point, the former Alameda Naval Air Station (NAS).  Since Alameda NAS became a Superfund site in 1999, the course content was regularly aligned with clean-up activities. Several course labs have followed site characterization and clean-up methods (X-ray fluorescence soil screening and a thermal reaction, which mimics how in situ chemical oxidation (ISCO) is used to clean up the groundwater onsite) (Bachofer, 2010).  Beyond utilizing Alameda Point as a study site, the community engagement aspects of the course have involved some direct service for a community partner, the Alameda Point Collaborative.  APC provides services to the homeless on the former Alameda NAS, assisting them with housing, job training, and social services to empower individuals who were formerly homeless.  In the past, students have performed educational outreach experiments for the APC youth.   This past year, an educational outreach project with APC teens was selected as appropriate in a pandemic.  

Educational outreach projects have been a part of many previous course iterations.  The outreach labs have ranged from inviting APC youth to Saint Mary’s College to do an experiment, implementing a chemistry lab for the local middle school, and learning the chemistry of garden nutrient kits.  These outreach projects were typically done in Alameda. Thus, planning to share a lab experience with the APC teens was somewhat routine, yet this year’s challenge was to do this lab remotely.

The Alameda Point Collaborative claimed, restored, and reinvigorated the base housing and facilities including one building initially used as a Native American health clinic, which was repurposed as a teen center. The central mission of the APC Teen Center is to inform, inspire, and educate the local youth to become productive members of their community and world.  Due to the pandemic, the Teen Center itself took on new role as a remote learning hub for the APC teens.  The center needed a full Wi-Fi upgrade and a new fence surrounding the building to provide some privacy and safety, and all the sinks, toilets, and dispensers were changed to be hands-free along with added temperature detectors so that the APC teens could have a COVID-safe instructional space.

Outreach Lab Methodology

Pre-planning  

Professor Bachofer and Mr. Cass discussed several laboratory experiments that might be sufficiently portable and educational during the summer of 2020.  To give the UrbanE students a vested interest in the outreach, there were a few Mattson gas generation labs as options.  The UrbanE students were encouraged to select a gas generation lab similar to their first lab preparing carbon dioxide.  The oxygen gas generation lab had a fun aspect of testing the oxygen gas with a smoldering splint (think lighting something on fire, safely) and it was selected.  

The oxygen gas generation lab was designed for students ranging from middle school to college.  The instructional materials are freely available via the Mattson Microscale Gas Generation website (Mattson, 2019).  This resource has three introductory gas labs to prepare either carbon dioxide, oxygen, or hydrogen. The procedure for gas generation and equipment to prepare each gas are nearly identical, except for the reagents.  The oxygen gas generation used only hydrogen peroxide, H2O2, as a reactant and potassium iodide, KI, as a catalyst.  The reaction time required to generate a full syringe of oxygen gas was approximately 10 minutes.  This gas was transferred into a test tube and upon adding a smoldering splint, reignition occurred.  

Professor Bachofer had previously used this lab with visiting middle school students on educational field trips to the College, so it was known to be very safe.  As the lab equipment and consumables were affordable and easily transportable, APC needed to only provide a safe working space and access to water for syringe work.  This implementation built on previous educational labs, so again the only real challenges were the restrictions imposed to keep everyone safe from the corona virus. 

UrbanE Student Preparation

The UrbanE students performed a gas generation lab as one of their labs.  Three lab periods were devoted to delivering the outreach lab to the APC teens.  Specifically, the UrbanE students’ carbon dioxide gas generation lab gave them hands-on experience. The UrbanE students generated CO2 gas following procedures from the Mattson website (Mattson, 2019).  During the two planning lab periods, the UrbanE students were asked to recall what was most helpful for them when they did the lab remotely.  This reflection activity led them to propose that a video be created, along with a one-page instructional sheet replacing the formal lab handout that they had used.  Two sets of students agreed to be filmed doing a setup and generating oxygen gas, one student edited the videos, and another few students revised a bulleted set of directions.  They were confident that this would provide multiple instructional tools to make the lab a success.  In the meantime, Professor Bachofer and Mr. Cass worked on the final logistics—how long these two groups would meet and the exact date and time (the lab would last approximately one hour and the course class time matched the Teen Center’s workday).  Cass and Bachofer also planned a discussion for the APC teens on what college is like, and Cass coordinated a starter set of questions.  This would prepare both groups of students to have a discussion. 

This outreach lab was aligned with productive educational civic engagement aspects outlined by W. Robert Midden (2018).   Elvin Aleman and his coworkers also noted that undergraduates exhibit significant gains in learning when planning educational service-learning projects designed to inspire the next generation of scientists (Godinez Castellanos et al., 2021).  Remote hands-on instruction has become a more critical tool during the past year, and many straightforward lab experiences can be instructional and fully portable as noted by Jodye Selco (2020).  All of these authors have indicated that faculty can easily provide guidance to undergraduates, and that implementation of hands-on and civic engagement activities empowers all students (Midden, 2018; Godinez Castellanos et al., 2021; Selco, 2020).    

Unfortunately, there was not time to request formal institutional review board approval of this project, which means that this article cannot include any student response data.  The results and conclusion sections will have only the authors’ reflections and insights on the effectiveness of this activity. 

Results

After the delivery of individualized laboratory materials, Mr. Cass and other APC staff performed a pilot run using the UrbanE students’ video to guide them.  This preparation gave them intimate knowledge of the experiment and made the joint lab day a tremendous success.

The APC teens did the experiment a total of three times, twice on the day of the joint Zoom session, plus another time approximately a week later.   The experiment was considered a success when the iodide catalyst caused the hydrogen peroxide to decompose forming the oxygen gas.  The APC teens, however, evaluated the experiment as a success only if one reignited a smoldering splint in the oxygen gas, generating a burst of flames!  With that definition, there was only 50% success on the first trial, yet on second trial, there was 100% success.  Only one detrimental incident occurred when the glass test tube broke and one APC teen got a minor cut.  The successful demonstration of oxygen gas reactivity with a smoldering splint overshadowed this minor incident, and all students gained from the shared lab experience.

When all were on the Zoom call, a further dialogue began during the second trial’s 10-minute gas generation time.  Mr. Cass asked the UrbanE students about the challenges of going to college and learning under COVID conditions.  This discussion was instructional as the UrbanE students shared their thoughts about college in general and their learning in a pandemic.   It gave the APC teens some idea how college could still be accomplished in a pandemic.  This outreach lab was so successful that two groups arranged for a subsequent shared meeting so that the UrbanE and APC teens could share thoughts on the challenges of recycling various materials, providing a second linkage to their course content.    

There were two big successes from this outreach lab.  The APC teens noted that the UrbanE student videos did help them do the experiments and come away with some renewed confidence that doing science, specifically chemistry, was possible.  The UrbanE students recognized that they could use their new knowledge to positively impact others.

Co-Instructor Reflections

Mr. Cass’s Reflection 

In my case, there was a personal reason why this experimental format was beneficial, besides all of the obvious educational reasons. During my interview for Teen Center coordinator, in December 2018, I was playing basketball with some of the APC teens who also happened to be present during the experiment. We chatted while we played and when I asked “What do you guys want to be when you grow up?” one of the students responded to me that he wanted to be a chemist when he grew up. On the day of our experiment, that student reminded me of our conversation in 2018 and how the opportunity to try the experiment firsthand was satisfying. 

Recently, I asked what they remembered about the experiment. I was surprised to find that they were able to give me the step-by-step instructions and they remembered a lot about why and how the experiment worked.  They noted that they hadn’t read the instructions initially, but to finally see the splint ignite was great. In fact, the syringe lab was really interesting and was worth doing over with them.  They also commented that the experiment could teach students something deeper than just chemistry: that you can fail at something over and over again but if you keep doing it, eventually you’ll get it right.  

Prof. Bachofer’s Reflection

The impact of this educational outreach lab was quite remarkable.  The UrbanE students came away from the hour-long Zoom session impressed and exhilarated that the APC teens had conducted a very successful experiment. The student reflections were filled with positive thoughts and nearly all began with a note that they were initially unsure that we could accomplish this outreach.  The students were graded on their contributions to both the outreach lab and discussion.  Marque Cass’s most impactful question was, “What are you as Saint Mary’s UrbanE students likely to take away from this course?”  This prompted many students to remark in their reflections that they would be more committed to helping their communities in the future.  Again, the reciprocity of this educational outreach was apparent.

The community engagement made this environmental science course more meaningful for the Saint Mary’s UrbanE students, and it truly heartened the faculty member in these exhausting times.  The major takeaway is that educational outreach can be done in a pandemic and it will truly enrich you and your community.   

Key Points to Ensure Success

  • The college and the community partner were committed to listen and to make plans that would benefit each other.
  • The planning was done in advance and follow-up through emails ensured the project progressed on schedule.
  • The instructor and the supervisor aligned their work expectations to benefit both student groups.
  • The lab experiment yielded an easily observable reaction.  The lab materials were also very affordable.
  • The students were empowered to do tasks connected to the educational content of their courses and recognized that each community was a significant contributor.

Acknowledgement

At Saint Mary’s College, this Urban Environmental Issues course serves as a general education science course with an integrated community engagement component.  It assists students to fulfill two core curriculum requirements with one course.  Via CILSA (Catholic Institute for LaSallian Action), the institution supports faculty and community partners in their efforts to organize and implement the latter curricular objective.  This does not eliminate the work that is required to implement it. However, CILSA does assist with the administrative challenges (MOUs), helps to maintain more durable college/community organization partnerships, and provides the faculty with additional training on effective implementation.  

About the Authors 

Steven Bachofer teaches chemistry and environmental science at Saint Mary’s College and has worked with the Alameda Point Collaborative for more than 15 years through his affiliation with the SENCER project. He has also co-authored a SENCER model course with Phylis Martinelli, addressing the redevelopment of a Superfund site (NAS Alameda).  

Marque Cass has been in the field of education since before his graduation from UC-Davis, where he earned a BS in Community and Regional Development with an emphasis in Organization and Management. Since January 2019, he has been the youth program coordinator for Alameda Point Collaborative, doing mentoring and advocacy work for formerly homeless families. More recently, he has been elected a community partner liaison with Saint Mary’s College, working to help create stronger networks between organizations.

References

Bachofer, S. J. (2010). Studying the redevelopment of a Superfund site:  An integrated general science curriculum paying added dividends.  In R. Sheardy (Ed.), Science education and civic engagement: The SENCER Approach, 117–133. Washington, DC: American Chemical Society. 

Godinez Castellanos, J. L., León, A., Reed, C., Lo, J. Y., Ayson, P., Garfield, J., . . . Alemán, E. A. (2021). Chemistry in our community: Strategies and logistics implemented to provide hands-on activities to K–12 students, teachers and families.  Journal of Chemical Education, 98(4), 1266–1274. https://pubs.acs.org/doi/10.1021/bk-2010-1037.ch008  

Mattson, Bruce. (2019). Microscale gas chemistry. Omaha, NE: Creighton University. Retrieved from http://mattson.creighton.edu/Microscale_Gas_Chemistry.html  

Midden W. R. (2018). Teaching chemistry with civic engagement: Non-science majors enjoy chemistry when the they learn by doing research that provides benefits to the local community.  In R. Sheardy and C. Maguire (Eds.), Citizens first! Democracy, social responsibility, and chemistry, 1–31. Washington, DC: American Chemical Society. 

Selco, J. (2020). Using hands-on chemistry experiments while teaching online. Journal of Chemical Education, 97(9): 2617–2623.  https://dx.doi.org/10.1021/acs.jchemed.0c00424 

Download the article

Download (PDF, 845KB)

Farming Practices as Funds of Knowledge

Abstract

This study examines farming practices across regions as funds of knowledge that may be integrated into K–12 curricula and instruction. Funds of knowledge, as conceptualized by Moll, Amanti, Neff, and González (1992), include the knowledge students bring from their families and home communities to the classroom, and serve as resources to enhance curricular relevancy, concept and skill development, learner and family engagement, and a positive learning environment. Funds of knowledge include home language use, family values and traditions, caregiving practices, family roles and responsibilities, and professional knowledge, among other factors identified by González, Moll, and Amanti (2005). This qualitative study interviews four participants with U.S. and international farming experience to invite reflection on practices across cultures and regions. Constant comparative analyses of interviews (Merriam & Tisdell, 2015) highlight ways culture and farming are connected and present farming practices as important funds of knowledge. This inquiry offers valuable implications for elementary curricula and instruction. 

Introduction

This study examines farming practices as funds of knowledge that may be integrated into K–12 curricula and instruction. Funds of knowledge, as conceptualized by Moll, Amanti, Neff, and González (1992), include the knowledge students bring from their families and home communities to the classroom, and serve as resources to enhance curricular relevancy, concept and skill development, learner and family engagement, and a positive learning environment. Funds of knowledge include home language use, family values and traditions, caregiving practices, family roles and responsibilities, and professional knowledge, among other factors identified by González, Moll, and Amanti (2005). This research has sought to develop theory and practical approaches for educators to learn about the funds of knowledge of language learner families, and all learner families, in their school communities and to “re-present them on the bases of the knowledge, resources, and strengths they possess, thus challenging deficit orientations that are so dominant, in particular, in the education of working-class children” (Moll, 2019, p. 131). Collaborations among teachers, parents, and students are needed. 

Historically, U.S. public schools have not acknowledged the “strategic and cultural resources” or “funds of knowledge” that U.S.-Mexican multilingual learners have brought to the classroom from their home environments (Velez-Ibenez & Greenburg, 1992). Research offers creative approaches for integrating learner funds of knowledge into curricula and instruction. Alvarez (2018) invited bilingual first graders to author autobiographical stories sharing about life in a town on the Mexican-American border. Stories demonstrated self-perceptions as adding to family well-being. Humanizing pedagogies have drawn on students’ politicized funds of knowledge to support critical thinking, literacy skills, and political participation in achieving social equity for all by connecting their lived experiences to school curricula (Gallo & Link, 2015). This study builds on previous research demonstrating family farming experience as valuable student knowledge to engage in elementary science classrooms (e.g., Harper, 2016). Moll (2019) includes farming as one of the careers in the primary and secondary sectors of the economy that learners may bring to the classroom from marginalized working-class homes, and he encourages educators to create opportunity for learners of all backgrounds, including farming families, to “display, elaborate, and share” their experiences as a learning resource and rich knowledge base (p. 131).

Need for the Research

In Fall 2017, 10.1% of students in U.S. public school K–12 classrooms were identified as English Language Learners (ELLs), an increase from 8.1% in 2000 (U.S. Department of Education, 2017–18). These statistics also reflect the population of ELLs in a sample Midwest county, indicating that diversity of student populations exists not only on the borders and coasts, but is integral to the nation. In the Bartholomew County School Corporation in South Central Indiana, of approximately 1,200 students, just over 10% of the K–12 school population identified as English Language Learners (ELLs) (Johannesen, 2019). Of multilingual families in the U.S., about 77% reported speaking Spanish at home, with other common home languages including Arabic, Chinese, and Vietnamese (Bialik, Scheller, & Walker, 2018). Migrant language learning families make up a significant percentage of U.S. agricultural workers. In an article on immigration and farming, Kurn (2018) reflected that “immigrants are deeply involved in this complex journey from seed to plate … an indelible part of rural America, contributing to the economic and cultural fabric of these communities” (para. 2). Farmworkers Justice found that around 70–80% of farmworkers are immigrants, while the United States Department of Agricultural (USDA) found that 60% of all agricultural workers are immigrants (Kurn, 2018, para. 4). The above statistics demonstrate the need to prepare teachers and teacher candidates to support ELLs, farming and migrant families in U.S. schools. Classrooms need curricula and instruction that affirm and engage student backgrounds and knowledge as resources for all in the classroom, including farming knowledge. Moreover, teacher preparation programs need to prepare teacher candidates with curricular resources and instructional capacities for this.

Purpose

This study seeks to “re-present” (Moll, 2019, p. 131) farming knowledge across cultures and regions as funds of knowledge. To do this, the study examines connections between culture and farming practices, including similarities and differences across the U.S. and international regions. This study further considers how these farming practices as funds of knowledge may be integrated into elementary curricula and instruction and in teacher preparation contexts seeking to prepare teachers to support multicultural, multilingual learners. A model lesson plan (Appendix A), developed in a teacher preparation course for integrating funds of knowledge into curricula and instruction, is shared.

Methods

This qualitative study engaged constant comparative analysis (Merriam & Tisdell, 2015) to examine similarities and differences across farming practices and consider how culture and farming shape one another, from the perspectives of participants who have farming experience in the U.S. and in one or more international regions. Collected data included 30–45-minute interviews with four participants identified through a purposive selection process (Merriam & Tisdell, 2015) that involved asking the county’s soil and water conservation district for suggested participants. The first three participants were identified through this route. The fourth participant was identified by inviting volunteers through a social media outreach posted by one of the two researchers conducting the study. All four participants were selected to participate in the study because they had farming knowledge and experience in a U.S. region and in an international region culturally, ecologically, and politically distinct from their own. In the interviews participants were asked to consider how culture shapes and is shaped by farming practices in the U.S. and in international regions where they farmed. The interview protocol is included in Appendix B. Constant comparative analysis was used to identify themes and sub-themes that emerged from the interview data; the themes were not predetermined. This analysis process involved recording participants’ responses to each of the five interview questions, then coding responses focused on the U.S. context or the international context, to identify similarities and differences. The next layer of analysis involved reviewing this chart for key themes that emerged, including theme-based comparisons the participants made about the U.S. and international contexts in which they farmed. Finally, thematic findings were considered for how farming practices as regionally and culturally distinct funds of knowledge might inform and be integrated into K–12 curricula and instruction, and how this integration might play a role in supporting multicultural, multilingual learners and in meeting Teaching English to Speakers of Other Languages (TESOL) Teacher Preparation Standards.

Findings: Farming Practices as Funds of Knowledge

The findings from this qualitative study build on previous research by suggesting that culture shapes and is shaped by farming practices, and demonstrate specific ways in which U.S. farming practices contrast with farming practices in international settings. Analyses of participant interviews resulted in findings highlighting the following themes: automated vs. manual labor, individual vs. social farming, climate impact on food cultivation, institutionalized vs. personalized practices, and the politics of land ownership. Each of these themes highlights how farming involves funds of knowledge embedded in the communities and cultures of practice.

Automated vs. Manual Labor

Across interviews, participants emphasized distinctions observed in automated farming in the U.S. and manual farming practices in international developing regions, specifically the Philippines, Bolivia, Peru, and Ecuador. One participant reflected on the necessity to be well versed in technology to farm in the U.S.: “Here in the U.S. we are so reliant on technology and the data it gives us” (Peru-Ecuador-U.S. Farming Participant). She noted the similar use of automated practices in Canada, the Netherlands, and England. In contrast, she reflected on practices in Ecuador, where farming was “super hands-on” and where farmers had the opportunity to obtain technology, “but they choose not to, and would rather have their cows they know personally, and 20 cows they milk every day” and yet “here in the U.S. we might have 10,000 cows on a big farm” (Peru-Ecuador-U.S. Farming Participant). 

Individual vs. Social Farming

Another theme that surfaced across interviews is the noted distinction between individual and social farming practices. The participant with experience in the Philippines described farming there as a social enterprise that brought together family and community members. In contrast, he reflected that much of the farming that took place in the U.S. tended to be individually experienced. He noted that in the Philippines, there were “family groups working together in the gardens and fields” and that farming was “part of their social life, so there was a connection there with the culture” that “happens a lot less in the farms here” because “we are just more spread out” (Philippines-U.S. Farming Participant). Another participant, who had farming experience in Bolivia, reflected on his family’s difficult transition to farming abroad but said that their intentional development of friendships resulted in their “farm not walking away on them,” or having items taken. This farmer described his transformation in discovering the importance of community to support one another. He emphasized near the end of the interview, “Get to know your neighbors and the services they can offer for free. That is priceless” (Bolivia-U.S. Farmer Participant), and he encouraged this practice across professional fields and across international regions—in the U.S. as much as in Bolivia.

Climate Impact on Food Cultivation

Only one participant emphasized the importance of climate in shaping agriculture and the kinds of foods that can be cultivated, and thus the kinds of foods that are enjoyed most often by the local culture. This farmer referenced his experience in the Philippines to highlight that “where we live determines the climate and what is possible to grow” (Philippines-U.S. Farming Participant). This then influences the kinds of foods that are enjoyed at family and community gatherings, holidays, and other cultural celebrations.

Institutionalized vs. Personalized Practices

All participants described distinctions between institutionalized farming practices in the U.S. and more personalized farming practices in international regions, particularly the Philippines, Peru, and Ecuador. The participant with experience in Ecuador and Peru described the value farmers hold there for knowing “each cow, personally,” in contrast to her experience in the U.S. She reflected, “In America we are taught Go big and do what makes it easier, but in Peru [the focus is] take care of yourself, take care of the land, take care of others” (Peru-Ecuador-U.S. Farming Participant). She said that in Peru there are more “diverse, small field” crops and that farmers “care more about their native plants and what they can grow well,” but in the U.S., there are “mass farming or commercial farms that plant all the same crop … 100 acres of potatoes and they are exported” (Ecuador-Peru Farming Participant). This participant felt there was more “pride in what [Ecuadorians and Peruvians] grow because they know it is feeding their neighbors and the community,” while in America, it just seems more of an industry” (Peru-Ecuador-U.S. Farming Participant). This participant referenced her observations of farming practices in Canada, the Netherlands, and the United Kingdom that minimized “Go big or go home” practices putting smaller farms out of business. For example, a quota system in Canada requires farmers to purchase rights to the amount of milk a farm will produce—aside from the cost involved in producing that milk. Thus, bigger farms have greater incentive to veer from large-scale farm development. This middle ground seemed ideal to her, as Ecuador’s system led to underproduction of milk for the people, yet America’s big farm efficiency led to 100 family farms closing their doors in one year. One of the participants with experience in Bolivia emphasized the political challenges they faced in accessing the resources they needed to sustain their living situation. He felt similar challenges will be faced in the U.S. if big business farming pushes out smaller farms, leading to lease farming, and minimizing a farmer’s ability to understand and respect the land being cultivated. Likewise, another participant noted that most U.S. farm families are “looking for the next generation to farm that same ground,” so it is “critical to preserve that land, so their kids and grandkids can make a living from the land” (Philippines-U.S. Farming Participant). Without personal connection to the land, the process of land ownership can become complex, both financially and politically driven.

The Politics of Land Ownership

The two participants with farming experience in Bolivia continued to emphasize throughout the joint 1.5-hour interview the complex politics involved in land ownership in Bolivia and increasingly in the U.S. One of these participants reflected on observing land permit applications being stacked in one pile for those with “the right connections” and in another pile for those without such connections. He relayed the fear expressed by American Mennonite farmers in Bolivia when a new political leader entered office, and the negative consequences this would have for their ability to access the resources needed to farm and make any profit on their produce. This participant reflected, “governments and institutions are just a way for whoever has control to have legitimacy to look the other way on the people who they want to get ahead” (Bolivia-U.S. Farming Participant). The same farmer expressed concern over the rising trend in big business farming in the U.S., leading to land rentals and pushing smaller generational family farms out of business.

Discussion and Implications


This study offers insights into important connections between culture and farming practices, and demonstrates ways that farming practices are funds of knowledge integral to communities and their cultures. These findings are important for teachers seeking to support multicultural, multilingual learners who may immigrate to a new region and bring a farming background with them, and learners who might gain new knowledge from classmates with a farming background. This study recognizes farming practices as meaningful funds of knowledge that learners and their families may bring to K–12 classrooms, as emphasized by Harper (2016). This study also recognizes that student familiarity with farming will vary based on the family, school, district, and region, and teachers will need to adjust accordingly. More broadly, this study builds connections across local and international cultures to promote glocalization as a valuable societal aim for K–12 schools and society, as supported by Patel and Lynch’s research (2013). This study reveals specific connections across culture and farming practices regarding the use of automated vs. manual labor, individual vs. social farming, the impact of climate on food cultivation, institutionalized vs. personalized farming, and the politics of land ownership.

Implications for Elementary Curricula and Instruction

This study demonstrates ways culture and farming shape one another and reveals farming practices as a significant fund of knowledge that students and their families may bring to a classroom and to a school community. Understanding similarities and differences across regional farming practices can support teachers in integrating this knowledge into curricula and instruction. Moreover, foundational understandings about agriculture connect to important climate-related content. The following themes from this study align with content covered in the Next Generation Science Standards, particularly Interdependent Relationships in Ecosystems: Environmental Impacts on Organisms taught in Grade 1, 2, and 3; Weather and Climate in Kindergarten and Grade 3; Earth and Space Systems in Grade 1, 2, 4 and 5; and Structure and Function in Grade 1 and Variation in Grade 3. For example, climate impact on cultivation addresses NGSS 3-ESS2-2: Obtain and combine information to describe climates in different regions of the world, and 3-LS4-3: Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all. Examination of institutionalized and personalized farming practices and the use of land meets NGSS 4-ESS3-2: Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans, and 5-ESS3-1: Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment. The following themes address topics covered by the National Council for the Social Studies Standards, including Culture; People, Places, and Environments; Science, Technology, and Society; Global Connections; Civic Ideals and Practices. The potential thematic connections to these standards are many, and we encourage educators to explore them in depth.

Automated vs. Manual Labor

Teachers might guide elementary students in examining both the values and limitations of automated and manual farming practices in the U.S. and in one or more international regions. Such instruction might draw on this study by asking students to debate the pros and cons of using automated farming equipment for different types of farming work such as harvesting crops and milking cows, and to consider how their own values interact with the cultural values of the regions where these farming practices are implemented. One group of students might be asked to learn about and argue for the cultural value of knowing every cow, as in some smaller farms, while another group may be asked to learn about and argue for the business value of producing high volumes of milk in big farms.

Individual vs. Social Farming and Climate Impact

Teachers might partner with the community by inviting parents, older siblings or students, instructional aides, or other members of local multicultural, multilingual communities to visit their classroom and share about their own or their family member’s experiences with social farming practices in international regions. This sharing might articulate the benefits of farming together to feed the local community, as well as nutritional benefits and traditional celebrations that are based around specific locally cultivated crops. The speaker might also share any challenges navigated in a family unit and/or local community when members are farming together. Related to culturally cherished foods, the teacher might guide students to research the climate of different regions, how this shapes the kinds of foods grown there, and specific dishes and recipes that become integral to cultural gatherings, holidays, and traditions.

Institutionalized vs. Personalized Practices and Land Politics

Teachers might connect two themes of this study, by helping students examine how institutionalized and more personalized approaches to farming shape and are shaped by the politics of land ownership. Student groups might each take a country and examine how the national and local policies of land ownership shape attitudes toward the land and the practices therein. They might also examine how local farmers and their farming needs and practices influence (or not) local and national policies on land use and ownership. As students compare similarities and differences across regions, the teacher will need to guide students to continually contextualize farming and policy practices with broader local and national cultural influences. Students can be guided to view and understand this new information as funds of knowledge they may use to support their own local and global understandings.

Implications for Teacher Preparation

This study offers valuable implications for institutions of teacher preparation, and suggests that the integration of farming knowledge as funds of knowledge into teacher preparation coursework is valuable for multicultural, multilingual classrooms. Both local and international learners and their families benefit from connecting with and learning about local and international farming knowledge and practices. Such knowledge is a window for introducing complex cultural, ecological, and political topics, including automated vs. manual labor, individual vs. social farming, climate impact on food cultivation, institutionalized vs. personalized practices, and the politics of land ownership. Preparing teachers to integrate farming knowledge as culturally shaped funds of knowledge into curricula and instruction supports teacher candidates in meeting the Council for the Accreditation of Educator Preparation (CAEP) Elementary Teacher Preparation Standards, particularly using knowledge of diverse families and communities to plan inclusive learning experiences that build on learners’ strengths and address needs (Standard 1b); integrating cross-cutting concepts in the content area of science (Standard 2c); differentiating plans to meet the needs of diverse learners (Standard 3d); supporting student motivation and engagement through culturally relevant and interesting content (Standard 3f); and collaborating with peers and other professionals to create developmentally meaningful learning experiences for all (Standard 5a). 

Preparing teachers to integrate funds of knowledge into curricula and instruction also supports teacher candidates in meeting TESOL PreK–12 Teacher Preparation Standards, including guiding students to engage in discourse across the content areas (Standard 1a); planning for culturally and linguistically relevant, supportive environments (Standard 3a); utilizing relevant materials and resources to support learning (Standard 3e); and collaborating with the broader community as a resource to support student learning (Standard 5a). A model lesson plan, Farming Practices as Funds of Knowledge for Multilingual Learners, is provided in Appendix A. Local and international farming practices as funds of knowledge serve as a window to better understand students’ diverse backgrounds. It is important to prepare teachers to engage this important form of cultural knowledge to affirm and learn from diverse learners. 

About the Authors 

Laura B. Liu, Ed.D. is an assistant professor and Coordinator of the English as a New Language (ENL) Program in the Division of Education at Indiana University-Purdue University Columbus (IUPUC). Her research and teaching include the integration of civic science and funds of knowledge into elementary and teacher education curricula and instruction.

Taylor Russell is an elementary teacher and earned her Bachelor of Science in Elementary Education at Indiana University-Purdue University Columbus (IUPUC), with a dual license in teaching English as a New Language (ENL).

References

Alvarez, A. (2018). Drawn and written funds of knowledge: A window into emerging bilingual children’s experiences and social interpretations through their written narratives and drawings. Journal of Early Childhood Literacy, 18(1), 97–128.

Bialik, K., Scheller, A., & Walker, K. (2018, October 18). 6 facts about English Language Learners in U.S. public schools. Washington, DC: Pew Research Center. Retrieved from https://www.pewresearch.org/fact-tank/2018/10/25/6-facts-about-english-language-learners-in-u-s-public-schools/

Gallo, S., & Link, H. (2015). “Diles la verdad”: Deportation policies, politicized funds of knowledge, and schooling in middle childhood. Special Issue Dissolving Boundaries: Understanding Undocumented Students’ Educational Experiences for Harvard Educational Review, 85(3), 357–382.

García, O. (2009). Bilingual education in the 21st century: A global perspective. Malden, MA: Wiley-Blackwell.

González, N., Moll, L., & Amanti, C. (Eds). (2005). Funds of knowledge: Theorizing practices in households, communities and classrooms. Mahwah, NJ: Erlbaum.

Harper, S. G. (2016). Keystone characteristics that support cultural resilience in Karen refugee parents. Cultural Studies of Science Education, 11, 1029–1060.

Johannesen, K. (2019, January 26). BCSC superintendent outlines legislative priorities. The Republic. Retrieved from http://www.therepublic.com/2019/01/27/bcsc_superintendent_outlines_legislative_priorities/

Kurn, J. (2018, August 24). Immigration and the food system. Cambridge, MA: Farm Aid. Retrieved from: https://www.farmaid.org/blog/fact-sheet/immigration-and-the-food-system/

Merriam, S. B., & Tisdell, E. J. (2015). Qualitative research: A guide to design and implementation (4th ed.). Hoboken, NJ: John Wiley & Sons.

Milway, K. S. (2010). The good garden: How one family went from hunger to having enough. Toronto, ON: Kids Can Press.

Moll, L. C. (2019). Elaborating funds of knowledge: Community oriented practices in international contexts. Literacy Research: Theory, Method, and Practice, 68, 130–138.

Moll, L. C., Amanti, C., Neff, D., & González, N. (1992). Funds of knowledge for teaching: Using a qualitative approach to connect homes and classrooms. Theory Into Practice, 31(2), 132–141.

NGSS Lead States. 2013. Next generation science standards: For states, by states. Washington, DC: The National Academies Press.

National Curriculum Standards for Social Studies: Introduction. (n.d.). Silver Spring, MD: National Council for Social Studies. Retrieved from https://www.socialstudies.org/standards/national-curriculum-standards-social-studies-introduction

Patel, F., & Lynch, H. (2013). Glocalization as an alternative to internationalization in higher education: Embedding positive glocal learning perspectives. International Journal of Teaching and Learning in Higher Education, 25(2), 223–230.

Strauss, A., & Corbin, J. (1998). Basics of qualitative research: Techniques and procedures for developing grounded theory. Thousand Oaks, CA: Sage Publications.

TESOL International Association (TESOL). (2019). Standards for initial TESOL Pre-K–12 teacher preparation programs. Alexandria, VA: Author.

U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD), Local Education Agency Universe Survey, 2017–18. Retrieved from https://nces.ed.gov/programs/coe/indicator_cgf.asp

Vélez-Ibáñez, C. G., & Greenberg, J. B. (1992). Formation and transformation of funds of knowledge among U.S.-Mexican households. Anthropology & Education Quarterly 23(4), 313-335.  

Appendix A

Lesson Plan: Farming Practices as Funds of Knowledge for Multilingual Learners

Teaching Context

Grade Level(s): 5th   
Number of Students: 20–25  
Multilingual Learners: 50–75%

Lesson Planning

Indiana Science Standard 5.ESS.3:
Investigate ways individual U.S. communities protect the Earth’s resources and environment.

Learning Outcome:
Students will COMPARE how communities in three regions practice sustainable farming.

Indiana Social Studies Standard 5.2.8, Roles of Citizens:
Describe group and individual actions that illustrate civic virtues, such as civility, cooperation, respect, and responsible participation. 

Learning Outcome:
Students will DESCRIBE sustainable farming practices in three regions as funds of knowledge. 

WIDA ELD Standard 3 and WIDA ELD Standard 5:
English language learners communicate information, ideas and concepts necessary for academic success in the content areas of Science and Social Studies

Language Objectives:
Students will IDENTIFY and DESCRIBE similarities and differences in sustainable farming practices as funds of knowledge in Honduras, Guatemala, and the U.S. (Indiana).

Lesson Instruction

Lesson Introduction: 

Share with the class three pictures of sustainable farming practices, in Honduras, Guatemala, and the U.S. Ask if anyone knows or can guess what sustainable farming, means. Repeat student ideas in English and Spanish and write ideas in both languages on the board. Provide a definition for sustainable farming in English and Spanish. Explain that sustainable farming is important for all countries as everyone needs access to sustainable, nutritious food. Note the class will learn about sustainable farming practices in three different countries today: Honduras, Guatemala, and the U.S.—Columbus, Indiana! Introduce the book, The Good Garden: How One Family Went from Hunger to Having Enough (Milway, 2010). Ask the class to examine the title and picture on the front cover to predict what the book may be about. Explain the book is about one family’s work in Honduras to begin sustainable farming practices, by creating a garden to provide sustainable food security for local families. 

Learning Activities: 

Pass out the Venn Diagram graphic organizer.

I DO: Model for students how to complete the Honduras section. Read The Good Garden in English, with Spanish translation by the instructional aide. Complete this sentence frame on the board: “In Honduras, sustainable farming can include ____ and ____.”

WE DO: Invite the instructional aide to share in English and Spanish about sustainable farming practices on her grandparents’ farm in Guatemala. As a class, complete this sentence frame on the board: “In Guatemala, sustainable farming can include ____ and ____.”

YOU DO: Play video a local farmer in Columbus, Indiana created about sustainable farming practices that many farmers use in Indiana. Invite students to pair-share and complete this sentence frame by speaking and writing, in English OR another language: “In Columbus, Indiana, sustainable farming can include _____ and _____.”

Lesson Conclusion: 

Invite pairs to verbally respond to the following questions: What are similarities across the sustainable farming practices in Honduras, Guatemala, and Indiana? What are differences? Students will be invited to use their Venn Diagrams and the following sentence frames to respond: “One similarity in sustainable farming practices across the three regions is ______.” and “One similarity in sustainable farming practices across the three regions is ______.” Ask students how these practices relate to the concept, funds of knowledge, shared in the previous lesson. Conclude that the sustainable farming practices discussed today are funds of knowledge of the cultures and families within those regions, including their agricultural, environmental, and professional knowledge.

Appendix B

Interview Questions: Farming Practices as Funds of Knowledge

Interview Introduction: 

We are conducting this interview as part of a study to learn more about farming practices as funds of knowledge and how these may be integrated into K–12 classroom curricula and instruction. Dr. Luis Moll, from the University of Arizona, studied and describes  funds of knowledge as the knowledge that students bring from their families and homes to the classroom, which can be used to teach concepts and skills in the classroom curricula. Dr. Harper of the University of Georgia encourages reciprocal construction of classroom knowledge in which families’ farming practices are engaged as valuable  funds of knowledge in science. 

Funds of knowledge can include a variety of understandings, such as cultural traditions, values, beliefs, languages, professional skills, farming practices, recipe nutrition, etc.

Interview Questions:

1. Explain any farming practices that are valuable to your culture and may represent  funds of knowledge within your culture.

2. Explain any views toward the ecology and the land that are important in your culture and may represent  funds of knowledgewithin your culture.

3. Do you feel your culture and farming practices are connected? Explain your response.

4. Do you feel your culture may shape farming practices in your region of origin? Explain.

Download the article

Download (PDF, 567KB)

Promoting STEM Learning through a Multidisciplinary SENCER Framework at a Minority-Serving Institution

Abstract

The Prospect Park Biodiversity Project was a SENCER collaboration project between the Departments of Biological Sciences, Chemistry, and Mathematics at the New York City College of Technology.  The goal of this project was to enhance students’ participation and learning in STEM disciplines through a civically engaged framework. The project utilized the eco-complexity of Prospect Park Lake in Brooklyn, New York for an interdisciplinary study on the water quality. The project, which involved ten students and four faculty mentors, integrated microbiology, chemistry, and mathematics perspectives using active-learning pedagogies, including hands-on exploration and collaborative learning.

Introduction

The Prospect Park Biodiversity project was initiated by four faculty—a microbiologist, a biochemist, and two mathematicians—at the New York City College of Technology (City Tech).  Located in downtown Brooklyn, City Tech is a public, open access, non-residential, minority-serving institution. With students representing the demographics of Brooklyn and the Metropolitan New York City area, it is one of the most racially and ethnically diverse higher education institutions. The intention of the project was to promote STEM learning among women and underrepresented minority students through an interdisciplinary collaboration in a SENCER (Science Education for New Civic Engagements and Responsibilities)  framework (Figure 1).  The main goals were to accomplish the following: 

  1. To promote STEM learning through a hands-on collaborative interdisciplinary experience.
  2. To create an undergraduate research experience for students.
  3. To heighten students’ awareness of community resources and their civic responsibilities.
  4. To encourage STEM learning and research among women and underrepresented minority students.

According to Heidi Jacobs’ manual, “interdisciplinary” is defined as a “knowledge view and curriculum approach that consciously applies methodology and language from more than one discipline to examine a central theme, issue, problem, topic, or experience.”  She recognized the growing need for interdisciplinary content and emphasized “linkages” and “relevance” rather than fragmentation or polarity in curriculum design (Jacobs, 1989).  Studies have shown that an interdisciplinary framework for teaching encourages cognitive thinking and real life problem-solving (Husni & Rouadi, 2016; Cowden & Santiago, 2016). Pedagogy in Action, a project of the Science Education Resource Center (SERC) and the National Science Digital Library (NSDL) that shares and disseminates pedagogical practices, points out that interdisciplinary teaching helps foster the development of self-efficacy and multi-dimensional thinking, such as recognizing bias and understanding moral and ethical considerations (Pedagogy in Action, 2021). Shifting away from the traditional discipline-focused learning, today’s education values interdisciplinary learning in multi-perspective contexts and the transferability of skills across disciplinary boundaries (Murray, Atkinson, Gilbert, & Kruchten, 2014).  

Research also shows that active-learning pedagogy enhances the success of underrepresented minority students in STEM. Ballen, Wieman, Salehi, Searle, and Zamudio (2018) found that active-learning pedagogy (ALP) disproportionately positively benefited underrepresented minority (URM) students in science classes. While the non-URM (white and Asian) students showed little or no difference in course performance using ALP compared with the traditional lecture, the URM students showed an increase in science self-efficacy and sense of social belonging in classes that employed ALP, resulting in better grades and academic performance for URM students (Ballen et al., 2018). For active-learning pedagogies, Cattaneo (2017) used key words such as discovery-based, project-based, learner-centered, interdisciplinary, collaborative, etc., all considered high-impact STEM education practices for promoting deeper understanding and critical thinking, and for building STEM identity and belonging (Betz, King, Grauer, & Montelone, 2021; Kuh, 2016; Repko, 2006; Singer, Montgomery, & Schmoll, 2020).  

The SENCER framework was chosen because we believe in SENCER’s mission of connecting STEM learning to real-world problems and the issues of local, national, and global importance as well as teaching students about their civic responsibilities (SENCER).  The site of our study was Prospect Park, which was selected not only for its vast biodiversity and eco-complexity, but also for its vital role in the life and vigor of the community as “Brooklyn’s Backyard.” With 10 million visits a year, the Park provides events, concerts, and recreational and educational programs to help promote healthy, balanced living for its community. With one lake, the Park supports wildlife habitat of over a hundred species of birds and other fauna and offers resting, feeding, and breeding grounds for migratory birds (Prospect Park Alliance, n.d.).  

Project Design

The four faculty designed an interdisciplinary project involving students from the following three courses: Microbiology (BIO3302), General Chemistry 2 (CHEM 1210), and Statistics (MAT 1372). Students selected for the project would also enroll in the Honors and Emerging Scholars Programs, undergraduate research programs at City Tech. Of the ten undergraduate students, seven (70%) were female, seven (70%) were identified as underrepresented minority; five (50%) were female in the underrepresented minority group. Altogether, nine (90%) of the ten participants were either female or underrepresented minority students. They came from various STEM and health majors including Biomedical Informatics, Chemical Technology, Computer Science, Computer Engineering, Liberal Arts and Sciences, and Nursing. The project had three main components:

  1. Disciplined specific research with the faculty mentor: Students worked individually with the faculty mentor of their discipline to review literature and study the background of the project.
  2. Group work and interdisciplinary activities: Students and faculty from all three disciplines worked collaboratively in team meetings, laboratory experiments, field trips, etc.
  3. Project presentations and conference participation: Students were encouraged to disseminate their research results at local and national venues. This is integral to STEM identity building. 

The project attempted to investigate the key question “What is the water quality in Prospect Park Lake?”  The project activities were hands-on and exploratory, and encompass the scientific process from the microbiology, chemistry, and mathematics perspectives. The students worked as a team throughout the whole project. They went on field trips to Prospect Park, made observations of the park habitat, and collected water samples from the lake.  A map of Prospect Park Lake is provided in Figure 2, showing the water collection sites numbered 1–5 in red.  These accessibility sites were defined by the Prospect Park Alliance. Next, 50-ml water samples were collected in sterile tubes from the five sites in the lake. To avoid bacterial growth, the water samples were stored at 4°C in a cooler. After water collection, the team of students reconvened in the laboratory and performed chemical and microbial analysis (Figures 3 and 4). 

 

The Microbiology Perspective

As a result of an extensive literature search, students found that one of the most-used parameters to monitor environmental water quality is the level of enteric bacteria (coliforms), usually occurring in the intestines of humans, animals, and birds.  The presence of coliforms, such as Escherichia coli (E. coli) and Enterobacter spp. is an indicator of fecal contamination (Coulliette, Money, Serre, & Noble,  2009; Tortora & Funke, 2013). This could be of serious concern because the higher levels of coliforms show potential presence of pathogens (bacteria, viruses, etc.) and other pollutants (Bergman, Nyberg, Huovinen, Paakkari, Hakanen, & the Finnish Study Group for Antimicrobial Resistance, 2009). 

In our research, following collection of water samples, the students performed tenfold serial dilutions, and 1 ml from each dilution was inoculated, using nutrient agar and MacConkey agar plates (Gavalas & Cook, 2015). Nutrient agar is a general-purpose medium, supporting growth of wide range of microorganisms. MacConkey agar is a selective and differentiating medium for cultivation of coliforms (E. coli and Enterobacter spp.) After incubation at 37°C for 48–72 hours, the number of bacteria was determined by the colony forming units (CFU) assay. The colonies were counted manually, and the results shown as the number of CFU in 100 ml of water. Additionally, Simmons Citrate agar was used to differentiate between E. coli and Enterobacter spp. 

The Chemistry Perspective

The chemistry perspective focused on examining water quality in terms of dissolved oxygen, conductivity, concentration of nitrates and nitrites, pH, and hardness of water. Chemical analysis was performed on the water samples in the following manner: a) a Fischer Scientific Traceable Conductivity Meter was used to measure the conductivity; b) the dissolved oxygen (DO) was measured using the Winkler Method (data are reported as an average of three trials); and c) LaMotte multi-factor test strips were used to measure the water pH and nitrate or nitrite levels. All analyses were done at room temperature.  Distilled water was used as reference sample (where the dissolved oxygen levels were recorded to be 6.6 ppm and the conductivity 2.3 μS/cm [microSiemans/cm], both acceptable values).

The Mathematics Perspective 

The mathematics perspective provided students with the tools to examine the experimental data, think critically, and make scientific connections between the data and the water quality.  Students used Excel spread sheets for data analysis. Students learned to formulate alternative and null hypotheses based on practical problems and assessed the data critically using chi-squared test and correlation coefficient.

Results and Discussion

The Prospect Park Lake provides a wide variety of habitats with multiple wildlife species. The results from our water sample analysis are presented in Table 1. The students identified the potential sources of fecal contamination to be domestic dogs and wildlife. A variety of birds were observed along the lake (specifically at sites 1, 4, and 5), such as ducks, geese, and swans (members of Anatidae family). It has been shown that some birds can excrete high amounts of coliforms, which may be a potential risk for pathogens. An earlier study has demonstrated that the density of aquatic birds affects the total number of bacteria in lakes, as birds are a natural source of coliforms, including E. coli (Hoyer, Donze, Schulz, Willis, & Canfield, 2006). 

Furthermore, the students observed the presence of multiple freshwater turtles at site 3, which most likely contributed to the highest numbers of total bacteria and coliforms at that site. Another factor resulting in the large number of bacteria at sites 2 and 3 could be the water stagnation, with lack of aeration and water currents, and the fact that these sites of the lake are very narrow. In contrast, the low number of total bacteria and coliforms at sites 4 and 5 could be explained by the water dynamics and free flow, as well as the location of the sites at the widest part of the lake. Other potential factors that affect the total number of bacteria are the temperature and weather conditions. Our results indicate that the sites in which the number of coliforms was higher are the areas with significant concentration of wildlife. Thus, it seems that the water contamination is due to the inhabitants of Prospect Park Lake. Moreover, the samples obtained from sites 4 and 5, which are from the area used for recreation purposes such as fishing and boating, showed the lowest bacterial levels. The numbers of coliforms at all sites of the lake, however, were above the safety standards established for boating and fishing (1000 CFU/100ml) by the U.S. Environmental Protection Agency (EPA) (2017).

Conductivity and dissolved oxygen are two important water quality parameters.  Conductivity measures the ability of a solution (such as water) to conduct electricity and can be correlated to salinity level. Higher conductivity values indicate more dissolved ions (which are necessary to conduct electricity) such as phosphate or chloride anions, or calcium or sodium cations (EPA, 2012a).  Prospect Park Lake appears to be on the lower end of conductivity; lakes and river water in the U.S. are typically 50–1500 μS/cm (EPA, 2012a).    The level of dissolved oxygen in water is temperature dependent.  Colder water typically has higher levels of dissolved oxygen (EPA, 2012b). Stagnant water contains less dissolved oxygen.  This was observed in sites 2 and 3, as the water was stagnant.  These two sites also had the lowest dissolved oxygen levels.   According to the United States Geological Survey (USGS) (2018), as organic matter decomposes, “bacteria in water can consume oxygen,” which may also point to why the levels of bacteria at sites 2 and 3 are high and dissolved oxygen levels relatively low, as well as to their moderately strong negative correlation coefficients (see mathematical analysis below). On the other hand, most enteric bacteria (coliforms) are facultative anaerobes.  In the presence of oxygen, they perform oxidative metabolism (respiration), whereas if dissolved oxygen levels are low, they switch to fermentation and still survive. As noted previously, the high bacterial counts at site 1 could be attributed to birds along the lake.  For aquatic life (i.e., fish) to be sustained, the dissolved oxygen level in water should be above 5 ppm.   Overall, the water quality of Prospect Park Lake (based on dissolved oxygen level) shows potential to support some aquatic life.

The undergraduate students made use of Excel spread sheets to record, organize, and analyze data. Students were tasked with finding the correlation between several parameters using correlation coefficients. The correlation coefficient, r, takes on a value between –1 and +1; an r value close to 1 implies a strong positive correlation between two parameters, an r value close to –1 implies a strong negative correlation, and an r value close to zero implies weak or no correlation.  We found a moderate negative correlation between the total number of bacteria with dissolved oxygen (r=-0.64353) and the number of coliforms with dissolved oxygen (r=-0.52226); a correlation between bacteria and dissolved oxygen is expected as explained in the paragraph above. Comparisons of other parameters yielded insignificant correlations. A chi-squared test on the number of coliforms revealed statistically significant variations in coliform counts between various sites for all sample data (p-value < 0.0001), meaning that the variations in the coliform counts were too large to have occurred by chance alone. Other factors such as animal activities and water conditions (stagnation or open lake) may have contributed to the coliform counts, as previously discussed.

This project led to two poster presentations at City Tech’s Semi-Annual Poster Sessions for Honors and Emerging Scholars, two oral presentations and a poster presentation at the Mathematical Association of America (MAA) Metropolitan New York Section Annual Conference, an oral presentation at the SENCER Regional Conference hosted by City Tech, a poster presentation at SENCER Summer Institute (SSI) and a student publication in the City Tech Writer (our college journal for exemplary student writing)  (Gavalas & Cook, 2015). 

A highlight and an eye-opening event for the students was the SENCER Summer Institute.  Here are comments by students reflecting their experience:

My SSI trip was one of highlights of my summer. And it was my first time attending an out-of-state conference. Although my team and I were the youngest participants, I really enjoyed showing the audience our poster. Many of them commended us for our work.… I watched many presentations by other attendees and even got to learn interesting facts about the National Park Service. It was amazing to hear what they do to preserve our country’s national parks.

My peers and I had the opportunity to meet the other attendees, and learned about the topics of their projects.…  I had an amazing time, thank you Professors for the opportunity.  

My group and I presented our poster and communicated with attendees of various backgrounds. It was interesting to see the poster presentations that (other) professors and students worked on.

Conclusion

Collaboratively, faculty members from biology, chemistry, and mathematics designed an interdisciplinary SENCER project on Prospect Park biodiversity.  Our investigation revealed that the coliforms in Prospect Park Lake exceeded the safety standards for secondary human contact (boating and fishing) (1000 CFU/100ml) established by the U.S. Environmental Protection Agency (EPA, 2017). The water quality in the lake is considered “threatened” (e.g., supports recreational use but exhibits a deteriorating trend) because of contamination with coliforms and other pollutants. In the last decade, the Prospect Park Alliance worked diligently to engage the community, expand its volunteer force, and secure funds for restoration and environment protection projects. We recognize the importance of their work and how much more still needs to be done. 

In addition to the SENCER framework, the project achieved its four goals: (1) The project activities were interdisciplinary, collaborative, and hands-on. All students regardless of disciplines were engaged in the activities; computer science and engineering students learned about biodiversity and performed laboratory tests alongside biology and chemistry students; biology and chemistry students learned to formulate and test scientific hypotheses using Excel alongside computer science students. (2) All students were required to enroll in the undergraduate research program and worked with faculty mentors an average of two hours per week. Research activities included one-on-one research with the faculty mentor as well as joint work with all faculty and students in the team. (3) All students had to read literature regarding water quality and its importance before starting the activities.  In addition, all students worked collaboratively to prepare posters and presentations, resulting in seven presentations and one student publication. (4)  Nine of the ten participants were women or underrepresented minority students in STEM or in a health major. All participants successfully completed the program.  Faculty and students shared the sentiment and appreciation for the richness and meaningfulness of the experience.  Future work may include an expansion or repetition on a regular basis for the benefits of civic engagement and educational values. 

Acknowledgements

This work was partially supported by a SENCER Post-Institute Implementation Award. We acknowledge the SENCER mission, which gave this team the opportunity to create a nontraditional and interdisciplinary curriculum to support the STEM learning of our students. We also acknowledge the City Tech Foundation, which provided financial support for students to present at the SENCER Summer Institute.

We acknowledge the excellent research performance of all student-researchers: Andrew Cook, Natassa Gavalas, Victor Adedara, Edrouine Gabriel, Erica Yeboah, Mallessa Yeboah, Eni Sejdini, Bryan Cespedes, Farjana Ferdousy, Natalie Nelson. We are grateful to the Office of Undergraduate Research, Emerging and Honors Scholars Programs at NYC College of Technology and City Tech Foundation for their support. DS acknowledges the support of the Chemistry Department and CUNY Compact funding.  The authors dedicate this paper in memory of Dr. Janet Liou-Mark, mathematics professor, scholar, and humanitarian.

About the Authors

Diana Samaroo is a professor in the Chemistry Department at NYC College of Technology in Brooklyn, New York.   She has experience in curricular and program development, as well as administration as the chairperson of the Chemistry Department for six years.  She has mentored undergraduates under the support of the Emerging and Honors Scholars program, CUNY Service Corps, Louis-Stokes for Alliance Minority Participation (LS-AMP), and the Black Male Initiative programs.  She serves as co-PI on several federal grants, which include NSF S-STEM, NSF RCN-UBE, and NSF HSI-IUSE grants. With a doctoral degree in biochemistry, Dr. Samaroo’s research interests include drug discovery, therapeutics, and nanomaterials.  Her pedagogical research is in peer-led team learning in chemistry and integrating research into the curriculum.

Liana Tsenova is a professor emerita in the Biological Sciences Department at the New York City College of Technology. She earned her MD degree with a specialty in microbiology and immunology from the Medical Academy in Sofia, Bulgaria. She received her postdoctoral training at Rockefeller University, New York, NY. Her research is focused on the immune response and host-directed therapies in tuberculosis and other infectious diseases. Dr. Tsenova has co-authored more than 60 publications in peer-reviewed scientific journals and books. At City Tech she has served as the PI of the Bridges to the Baccalaureate Program, funded by NIH. She was a SENCER leadership fellow. Applying the SENCER ideas, she mentors undergraduates in interdisciplinary projects, combining microbiology and infectious diseases with chemistry and mathematics, to address unresolved epidemiologic, ecologic, and healthcare problems. 

Sandie Han is a professor of mathematics at New York City College of Technology. She has extensive experience in program design and administration, including service as the mathematics department chair for six years, PI on the U.S. Department of Education MSEIP grant, and co-PI on the NSF S-STEM grant. Her research area is number theory and mathematics education.  Her work on self-regulated learning and mathematics self-efficacy won the CUNY Chancellor’s Award for Excellence in Undergraduate Mathematics Instruction in 2013. She was one of the eight selected participants in the CUNY-Harvard leadership program in 2018.

Urmi Ghosh-Dastidar is the coordinator of the Computer Science Program and a professor in the Mathematics Department at New York City College of Technology – City University of New York. She received a PhD in applied mathematics jointly from the New Jersey Institute of Technology and Rutgers University and a BS in applied mathematics from The Ohio State University. Her current interests include parameter estimation via optimization, infectious disease modeling, applications of graph theory in biology and chemistry, and developing and applying bio-math related undergraduate modules in various SENCER related projects. She has several publications in peer-reviewed journals and is the recipient of several MAA NREUP grants, a SENCER leadership fellowship, a Department of Homeland Security grant, and several NSF and PSC-CUNY grants/awards. She also has extensive experience in mentoring undergraduate students in various research projects.   

References

Ballen, C. J., Wieman, C., Salehi, S., Searle, J. B., & Zamudio, K. R. (2018). Enhancing diversity in undergraduate science: Self-efficacy drives performance gains with active learning. CBE Life Sciences Education, 16(4). https://doi.org/10.1187/cbe.16-12-0344

Bergman, M., Nyberg, S. T., Huovinen, P., Paakkari, P., Hakanen, A. J., & the Finnish Study Group for Antimicrobial Resistance. (2009). Association between antimicrobial consumption and resistance in escherichia coli. Antimicrobial Agents and Chemotherapy, 53(3), 912–917. https://doi.org/10.1128/AAC.00856-08 

Betz, A. R., King, B., Grauer, B., Montelone, B., Wiley, Z., & Thurston, L. (2021). Improving academic self-concept and stem identity through a research immersion: Pathways to STEM summer program. Frontiers in Education, 6, 281.

Cattaneo, K. (2017). Telling active learning pedagogies apart: From theory to practice. Journal of New Approaches in Educational Research, 6(2), 144–152.

Center for Brooklyn History, Map Collections. (2021). Prospect Park map, 2009. Retrieved from https://mapcollections.brooklynhistory.org/map/prospect-park-map-3/ 

Coulliette, A. D., Money, E. S., Serre, M. L., & Noble, R. T. (2009). Space/time analysis of fecal pollution and rainfall in an Eastern North Carolina estuary. Environmental Science & Technology, 43(10), 3728–3735. 

Cowden C. D., & Santiago, M. F. (2016). Interdisciplinary explorations: Promoting critical thinking via problem-based learning in an advanced biochemistry class. Journal of Chemical Education, 93(3),464–469.

Gavalas, N., & Cook, A. (2015). Prospect Park biodiversity project: A microbiological perspective. City Tech Writer, 10, 6–10. 

Hoyer M. V., Donze, J. L., Schulz, E. J., Willis, D. J., & Canfield, D. E., Jr. (2006). Total coliform and escherichia coli counts in 99 Florida lakes with relations to some common limnological factors. Lake and Reservoir Management, 22(2), 141–150.

Husni, N., & Rouadi, N. (2016). Interdisciplinary curriculum empowers cognitive advancement to solve real life problems. Journal of Education and Learning, 5(4),34–43. 

Jacobs, H. H. (Ed.). (1989). Interdisciplinary curriculum: Design and implementation. Alexandria, VA: Association for Supervision and Curriculum Development.

Kuh, G. D. (2016). Making learning meaningful: Engaging students in ways that matter to them. New Directions for Teaching and Learning, 145, 49–56.

Murray, J. L., Atkinson, E. J. O., Gilbert, B. D., & Kruchten, A. E. (2014). A novel interdisciplinary science experience for undergraduates across introductory biology, chemistry, and physics courses. Journal of College Science Teaching, 43(6), 46–51.

Pedagogy in Action. (2021, May 26). Why teach with an interdisciplinary approach? Retrieved from https://serc.carleton.edu/sp/library/interdisciplinary/why.html 

Prospect Park Alliance. (n.d.) Official web site of Prospect Park. Retrieved from http://www.prospectpark.org/ 

Repko, A. F. (2006). Disciplining interdisciplinarity: The case for textbooks. Issues in Integrative Studies, 6(24), 112–142 

Science Education for New Civic Engagements and Responsibilities (SENCER). (2016–2017). SENCER: An NCSCE initiative. Retrieved from http://sencer.net/ 

Singer, A., Montgomery, G., Schmoll, S. (2020). How to foster the formation of STEM identity: Studying diversity in an authentic learning environment. International Journal of STEM Education, 7, 57.

Tortora, G. J., & Funke, B. R. (2013). Microbiology: An introduction (11th ed.). Boston: Pearson. 

United States Geological Survey (USGS). (2018, June 5). Dissolved Oxygen and Water. Retrieved from https://www.usgs.gov/special-topic/water-science-school/science/dissolved-oxygen-and-water?qt-science_center_objects=0#qt-science_center_objects

U.S. Environmental Protection Agency (EPA). (2012a, March 6). Conductivity. Retrieved from https://archive.epa.gov/water/archive/web/html/vms59.html 

U.S. Environmental Protection Agency (EPA). (2012b, March 6).  Dissolved oxygen and biochemical oxygen demand. Retrieved from https://archive.epa.gov/water/archive/web/html/vms52.html 

U.S. Environmental Protection Agency (EPA). (2017, October). National water quality Inventory: Report to Congress. Retrieved from https://www.epa.gov/sites/default/files/2017-12/documents/305brtc_finalowow_08302017.pdf 

Download the article

Download (PDF, 1.57MB)

 

Turning STEM Education Inside-Out: Teaching and Learning Inside Prisons

Abstract

The Inside-Out Prison Exchange Program is an international network of teachers and learners who work to break down walls of division by facilitating dialogue across social differences.  In this model, first developed by Lori Pompa at Temple University, campus-based college students (outside students) join incarcerated students (inside students) for a college course that is taught inside a correctional facility.  Compared to other disciplines, STEM courses are underrepresented in the Inside-Out program.  Here we discuss the unique opportunities of teaching a STEM course inside prison using the Inside-Out approach and how it differs from other models of STEM teaching in prison.  Our analysis is based on the experience of three instructors from two liberal arts colleges, who taught Inside-Out courses in statistics, number theory, and biochemistry inside a medium-security state prison for men.  

Introduction

For over 20 years, the Inside-Out Prison Exchange Program (https://www.insideoutcenter.org), based at Temple University, has brought campus-based college students together with incarcerated students for semester-long courses held in prisons, jails, and other correctional settings all around the world (Davis and Roswell, 2013). The Inside-Out approach to education is a collaboration between all parties involved, not one in which higher education professors and students go to a carceral organization to “help inmates” out of a sense of volunteerism or charity. The Claremont Colleges Inside-Out program at the California Rehabilitation Center (CRC), a medium-security  state prison for men located in Norco, CA, was originally brought to Claremont by Pitzer College (one of the Claremont Colleges).  The Claremont Colleges Inside-Out program is run in part by a group of incarcerated men at CRC who are vital members of our “Think Tank.”

Although hundreds of Inside-Out courses have been taught nationwide and the outcomes have been extensively studied (Inside-Out Prison Exchange Program, 2020), a very small number of the Inside-Out courses offered to date have been in the fields of mathematics or the natural sciences. In this paper, we explore some of the unique challenges and opportunities of using the Inside-Out approach for STEM classes.  

We recognize that there are myriad STEM programs inside carceral institutions.  They range from the nationally supported (e.g., NSF INCLUDES Alliance) to the very local (e.g., a program at CRC that allows inmates to earn an AA degree from Norco Community College).  At the Claremont Colleges, a group of student volunteers goes into prisons to teach non-credit physics, chemistry, and engineering through the Prison Education Project (http://www.prisoneducationproject.org). 

In contrast, here we are addressing the specific case of bringing traditional campus (outside) students into prison, not to be teachers, but to be co-learners alongside incarcerated (inside) students.  The simple difference of bringing together inside and outside students (which for us included both male and female students) fundamentally changes the structure of the classroom.  Without the co-learning process, both the inside and outside students miss out.  As part of the Inside-Out experience, the inside students have an opportunity to learn material to which they do not necessarily have access; but more importantly, the power structure of the learning is dismantled in a setting (a STEM class) where hierarchies typically dominate the space (Martin, 2009). For the outside students, the disruption of the power structure of the STEM classroom can be enlightening. The outside students experience the depth of learning that can happen when ideas come from many different perspectives.  In our experience, the impact of the Inside-Out classroom can be transformative for both groups of students, helping them to approach their learning and the world in a more humane way (Peterson, 2019).  

Here we present reflections based on three separate courses (math, statistics, and biochemistry) taught by three instructors from two different liberal arts colleges.  All three instructors had completed the weeklong Inside-Out Training Institute, and we were all teaching our first class in this format.  Each course was a full semester, credit-bearing course for all students, both inside and outside.  During the semester, the courses met once per week for up to three hours a week inside the prison.  We will talk about each course individually and then integrate our thoughts to offer a synthesis and analysis.

Thinking with Data (Jo Hardin)

Although Math 57 was a statistics class taught at an introductory level, it was not “Introduction to Statistics” as most university campuses conceive it.  The learning goals centered around being able to critically evaluate numbers and claims based on data that are presented.   The hope was for the students to realize that statistical conclusions are being made around them every day, and that to understand how those conclusions come about is a matter not only of quantitative literacy but also of a larger logical framework.  

Each week, the students read from a chapter of a statistics text (Utts, 1999) along with external articles.  For example, during the week when we covered sampling, the text was supplemented by articles on the sampling methods suggested by the Census Bureau as a way to improve the accuracy of the census—methods that were ultimately ruled unconstitutional by the Supreme Court, although statisticians believe the outcome of the ruling is to continue to undercount people of color and people with transitional living situations (Department of Commerce v. U.S. House of Representatives, 1999).  During the week covering probability, we spent time discussing forensics and how different “match” probabilities (e.g., hair match, DNA match, etc.) can have very different accuracy rates.

A typical day started with an activity designed to bring us all into the space, followed up with an activity which would highlight the day’s topic.  For example, during the week in which we covered confidence intervals, I brought in a blow-up globe.  We stood in a circle and threw the ball to one another, each time recording whether our right thumb landed on water or land.  We used technical details from the week’s readings to calculate a confidence interval for the proportion of the Earth that is covered in water.  (Depending on the correctional facility’s character, you might not choose to throw a ball around in an Inside-Out class; some facilities have strict security protocols and will not allow anything to be thrown around the classroom.)

After the topic-specific activity, we would often gather in small groups with a list of pre-written discussion questions.  The thought questions were meant to help the students dig deeper into the readings and debate the topic at hand.  Time and again, both the inside and outside students reported that the group discussions were their favorite part of the class.  In their small groups, hesitant students were given a voice, and each student could share their understanding of the material without fear of speaking up incorrectly in front of the entire class.

 Although we often ran short on time, we would always close with some kind of reflection on the material or on the day’s activities.  Sometimes we would go around the circle with a one-word reflection.  Sometimes I would ask them to report the part of the day which they were still struggling to wrap their heads around, or, slightly nuanced, the topic which was hardest to understand in general. 

After the class session each week, students were asked to write a reflection essay.  The reflection essay was among the most powerful aspects of the class, as it gave the students an opportunity to spend time putting down on paper both their emotional reactions and their understanding of the statistical topics.  The reflection paper had three sections: (1) observations from the class meeting—anything that stood out, (2) statistical analysis—using references from the texts, and (3) emotional reactions—feelings.

The reflections essays were not given a letter grade, yet they served the incredibly valuable purpose of connecting each and every student to both the material (statistical content) and the people in the room.  Detailed instructor feedback was provided on the essays, and without the essays, especially the personal reflection part, it would have been much harder for the students to feel connected and integrated into the course.

The last three weeks of the semester were spent working on projects whose purpose was to bring the ideas from the class into a larger space.  Outside visitors were invited to the closing ceremonies, but the logistics surrounding visitors’ clearance was unfortunately too complicated.  Instead, the students presented their projects to each other.  One group did a Dear Data (http://www.dear-data.com/) assignment where they compared artistic visualizations of the data describing a week in an inside student’s life with a week in an outside student’s life.  Another group made a chain link out of construction paper where each link detailed a study, a dataset, or an individual’s story describing recidivism.  A third group talked about some of the biggest misconceptions in statistical studies and how we can raise our consciousness to form valid conclusions about a study. 

HIV/AIDS: Science Society & Service (Karl Haushalter)

Chemistry 187 explored scientific and societal perspectives on infectious disease.  The course was divided into three modules focusing on plague, HIV-AIDS, and tuberculosis, with time approximately evenly divided between societal context and scientific content.  The complex and multidisciplinary challenges of responding to highly stigmatized infectious diseases such as HIV-AIDS can be fertile ground for exploring the entanglement of science and society, as demonstrated by the large number of published courses that use HIV-AIDS as a focus for integrating science education and civic engagement (for example, see Fan, Conner, & Villarreal, 2014; Iimoto 2005; SENCER 2020a; SENCER 2020b).  

Chemistry 187 was taught with the Inside-Out pedagogy, which emphasizes a dialogic approach with the majority of class time spent in small, mixed discussion groups (Pompa, Crabbe, & Turenne, 2018).  For the Chemistry 187 content related to our societal readings, this format was a natural fit for the issues we examined.  The students learned substantially from each other, especially given their differing perspectives based on life experiences related to the social determinants of health, which was an underlying theme of the course.  

Implementing the Inside-Out pedagogy for the science content of Chemistry 187 was challenging for me as an instructor.  Many of our chosen topics (e.g., virology) required a firm understanding of threshold concepts (e.g., the central dogma of molecular biology) in order to have an entry point into meaningful discussions (Meyer and Land, 2003).  As an instructor, I felt that I could not ignore the variation in previous exposure to biology instruction, but I did not want to center upon this difference either.  Thus, even though the students majoring in biology could have taught lessons on the threshold concepts, this approach would be counter to the spirit of Inside-Out in which the students are all co-learners. Ultimately, I used a hybrid approach that featured some mini-lectures that I strived to make as interactive as possible. When possible, these mini-lectures were preceded by small-group brainstorming sessions to generate motivating questions for the mini-lectures and followed by small-group applied problem-solving sessions.  The Inside-Out emphasis on community building, through icebreakers, circle activities, and jointly authored ground rules, paid dividends in the smooth functioning of the small group science lessons.   

If Chemistry 187 were taught as a traditional college campus-based course, the class would utilize technology (lecture slides, PyMOL, YouTube animations) for visualizing the molecular details of host-pathogen interactions.  In prison, where it was not possible to routinely access this type of technology, our class had to develop other methods to help the unseeable be seen.  Indeed, the absence of technology led to creative solutions.  By providing the students with large-format flip chart paper and thick colored markers, I allowed them to be creative in making colorful, detailed images that were even more informative than the standard slides used in the traditional campus-based course.  Several of the students had untapped artistic talent and working together with their classmates to interpret our readings, they were able as a group to communicate complex scientific ideas visually on the flip chart paper.  

An important part of an Inside-Out course is the end-of-semester group project. These projects are intended to be focused specifically on intersections of the course disciplinary topic and prison, with a strong emphasis on application (Pompa, Crabbe, & Turenne, 2018, p. 55).  In Chemistry 187, teams were blended, with two or three inside students and two or three outside students in each team.  All students were tasked to bring their own expertise to bear on the project, the theme of which was picked by the student teams.  For example, one of the student teams created educational posters about influenza vaccination.  As a class, we learned from the inside students that the flu vaccine is available at the California Rehabilitation Center, but many incarcerated men do not opt to get vaccinated, possibly due to low trust in the prison health system and widespread conspiracy theories (e.g., prison officials used the flu vaccine to inject people with tracking devices).  This is a missed opportunity to prevent a serious communicable disease that spreads easily in confined spaces (Sequera, Valencia, García-Basteiro, Marco, & Bayas, 2015). Working together, the inside and outside students on this team developed materials to address the common concerns of the target audience related to influenza vaccination and provide health-promoting education in the context of prison.  

Other team projects included a letter to the warden proposing the adoption of harm reduction strategies (e.g. bleaching stations for sterilizing needles used for illicit tattoos or injection drug use) to reduce the spread of hepatitis C in prison; educational pamphlets about preventing sexually transmitted diseases; and an evidence-based letter to the State Prison Board about the connection between nutrition and a healthy immune system.  The student projects shared in common the key feature of bringing together inside and outside students to share their unique expertise as they collaborated on a project that applied what they had learned about the science of infectious disease during the semester to an authentic issue in the living context of the inside students.  

Introduction to Number Theory (Darryl Yong)

Even though I have no formal training in number theory, I chose to teach this subject because it lends itself well to exploration and rehumanizing approaches to teaching and learning mathematics (Goffney, Gutiérrez, & Boston, 2018). Requiring only some mathematics skills and ideas from high school algebra, this course started with the divisors of integers and modular arithmetic and culminated with the Rivest–Shamir–Adleman (RSA) cryptosystem, a widely used method for secure data transmission.

Of our three courses, this one was perhaps the most grounded in its disciplinary content. While I organized several class discussions around our prior experiences of learning mathematics and about contemporary mathematicians (mostly of color), about 90% of class time was spent working on carefully sequenced sets of mathematical tasks in small groups. Students shared their results communally on the board, and I occasionally convened the group to share their findings with each other. The list of tasks for each class was adjusted based on what students accomplished and found interesting in previous classes.

In “Math Instructors’ Critical Reflections on Teaching in Prison,” Robert Scott writes: “A math pedagogy premised upon following the rules, accepting that there is only one right answer, and relying on practice/repetition in order to habituate oneself to predetermined axioms would seem to reprise the culture of incarceration itself.” How does one teach a class on a well-established field like number theory without reproducing the dehumanizing effects of prisons in the classroom?

To do this, I used a pedagogical approach based on my work delivering professional development to secondary school teachers through the Park City Mathematics Institute. In this approach, students encounter new mathematical ideas without any formal definitions or specialized notation. The mathematical tasks are designed to encourage students to look for patterns and make connections. Mathematical ideas are solidified when students give voice to them by sharing them publicly. Finally, after several exposures to similar patterns and connections, I formalized ideas by introducing their established mathematical names and notations. I followed this general approach during the entire course except for the last day of class when we used all of the machinery that we had developed to explain how the RSA cryptosystem works (Omar, 2017). So, even though students were often practicing and repeating mathematical calculations, they were in fact creating meaning for themselves and others in the classroom.

My observations of the students’ progress and their written reflections lead me to believe that they truly enjoyed learning mathematics, even though some had been traumatized by previous mathematics learning experiences. Each class period seemed to fly by. Students would work almost continuously for the entire period, though there was also quite a bit of casual banter and joyful laughter around the room. It felt like a space where both inside and outside students were doing mathematics and creating meaning together. My Inside-Out experience made me wonder why I don’t try to use more of this kind of rehumanizing pedagogy in my usual classes at Harvey Mudd College.

Lessons Learned

Examining the experiences of the three instructors, we find that several common themes emerge from our efforts to integrate STEM content within the Inside-Out Prison Exchange program. First, while many undergraduate STEM courses are primarily lecture-based, the Inside-Out program challenges faculty to use liberatory pedagogies (Freire, 1970).  Thus, we all chose to minimize lecturing as much as possible and spend most of our class time in small group activities or whole class discussion.  These forms of instruction democratize intellectual authority in the classroom and allow both inside and outside students to draw on personal funds of knowledge. An inside student wrote, “In non-Inside-Out classes I don’t learn who my peers are, whereas this class was unique in the fact that we were learning from one another just as much as we were learning from our professor.” Furthermore, with the inside and outside students constantly talking together and working with each other, the students discovered for themselves the many ways in which traditional college-age STEM students and incarcerated STEM students share common struggles, concerns, and motivations.  

A second common theme that we encountered in our classes was how Inside-Out courses helped students uncover and confront societal expectations and stereotypes about who is competent in STEM. In our end-of-course evaluation surveys, we asked students what their biggest worry about the class was prior to starting the course. A few outside students wrote that they were concerned that the Inside-Out course wasn’t going to be as rigorous as their usual courses, whereas inside students wrote that they were initially concerned about being able to “keep up” with the outside students. These concerns relate to societal stereotypes that STEM competence is innate rather than a skill to be developed and that incarcerated people and people of color are not able to access STEM. Fortunately, these surveys also revealed that students uniformly felt their Inside-Out courses to be intellectually demanding and that inside students felt successful in the class and were recognized for their contributions in class. The reason that students were able to upend their worries was because our Inside-Out courses brought together groups of people who would otherwise never get to meet each other in the context of doing rigorous, challenging STEM work together. One inside student wrote that he was surprised at the “ease [with] which people from diverse lifestyles and backgrounds can struggle with a subject, work together, and succeed.”

Finally, all three of the authors chose to teach an Inside-Out course primarily because of the humanity it offered to our work.  And while none of us are experts in criminal justice, we are all deeply aware that STEM is neither objective nor apolitical.  When designing our courses, we specifically chose topics and approaches that would connect STEM back to the human condition, for example, discussing how disease manifests in different communities, how forensic probabilities do not represent truth, and how mathematical self-identification is different from mathematical ability. There is abundant evidence that bringing humanity into STEM can have an enormous impact on marginalized communities, and we believe that our courses are part of that trend.

Along with humanizing the course content in each of our STEM courses, the act of bringing the courses inside is a manifestation of our collective belief that STEM is not the domain of the privileged few.  Instead, science and science education belong to and are in service of all people.  In plain sight of each other, students of all backgrounds are able to embrace the learning of STEM content. Creating a space that allows for the tangible recognition by everyone involved that STEM is for all people is itself a highly political act.  

Acknowledgements

We are grateful for the guidance and support of our colleagues from the Claremont Critical Justice Education Initiative, especially Tyee Griffith, Tessa Hicks Peterson, Gabriela Gamiz, and Nigel Boyle.  We would like to thank the staff at the California Rehabilitation Center for their continuing partnership.  Financial support was generously provided by the Andrew W. Mellon Foundation and the Academic Deans Council of the Claremont Colleges.  Critical feedback on the manuscript was provided by Tessa Hicks Peterson and David Vosburg.  We gratefully acknowledge Lori Pompa and the Inside-Out Center for their leadership and expertise.  Finally, we owe the largest debt of gratitude to our students, both inside and out.

Dedication

This article is dedicated to the memory of David L. Ferguson, whose lifelong work in extending the joys and benefits of STEM education to underserved students continues to inspire us.  David saw the potential to be a scholar in all of his students, even before they could see it in themselves.  We strive to follow the example of David’s pioneering work in diversity and inclusive excellence in STEM education.

Authors

Jo Hardin

Jo Hardin (Jo.Hardin@pomona.edu) is a professor of mathematics at Pomona College.  She is a statistician by training, and her research focuses on applied and interdisciplinary projects with molecular biologists.  Through the Posse Foundation, she has mentored students at Pomona College originally from Chicago, IL.

 

 

Karl Haushalter

Karl Haushalter (haushalter@hmc.edu) is an associate professor of chemistry and biology at Harvey Mudd College.  His research interests include the enzymology of DNA repair and the regulation of gene expression by small RNA.  Karl works closely with the Office of Community Engagement at HMC and has led faculty development workshops to promote community-based learning.

 

 

Darryl Yong

Darryl Yong (dyong@hmc.edu) is a professor of mathematics, associate dean for faculty development and diversity, and mathematics clinic program director at Harvey Mudd College. He was also the founding director of the Claremont Colleges Center for Teaching and Learning. His scholarship has several foci: the retention and professional development of secondary school mathematics teachers, effective teaching practices in undergraduate STEM education, and equity, justice, and diversity in higher education.

References

Davis, S., & Roswell, B. (Eds.). (2013). Turning teaching inside out: A pedagogy of transformation for community-based education. New York, NY: Springer.

Department of Commerce v. United States House of Representatives, 525 U.S. 316 (1999).

Fan, H. Y., Conner, R. F., & Villarreal, L. P. (2014). AIDS: Science and society (7th ed.). Burlington, MA:  Jones & Bartlett Learning.

Freire, P. (1970). Pedagogy of the oppressed (M. B. Ramos, Trans.). New York, NY: Continuum.

Goffney, I., Gutiérrez, R., & Boston, M. (Eds.). (2018). Rehumanizing mathematics for Black, Indigenous, and Latinx students. Reston, VA: National Council of Teachers of Mathematics.

Iimoto, D. (2005). AIDS and other human diseases: Teaching science in the context of culture. Journal of College Science Teaching, 34, 38–41.

Inside-Out Prison Exchange Program. (2020). Scholarship on Inside-Out. Retrieved from https://www.insideoutcenter.org/scholarship-inside-out.html

Martin, D. B. (2009). Researching race in mathematics education. Teachers College Record, 111(2), 295–338.

Meyer J. H. F., & Land, R. (2003). Threshold concepts and troublesome knowledge. In C. Rust, (Ed.), Improving student learning—ten years on (pp. 412–424). Oxford, UK: Oxford Centre for Staff and Learning Development.

National Science Foundation (NSF). (2019). NSF INCLUDES Alliance: STEM opportunities in prison settings. Retrieved from  https://www.nsf.gov/awardsearch/showAward?AWD_ID=1931045)

Omar, M. (2017). Number theory toward RSA cryptography: In 10 undergraduate lectures. (n.p.): CreateSpace Publishing. 

Peterson, T. H. (2019). Healing pedagogy from the inside out: The paradox of liberatory education in prison. In R. Ginsburg (Ed.), Critical perspectives on teaching in prison: Students and instructors on pedagogy behind the wall (pp. 175–187). New York, NY: Routledge.

Pompa, L., Crabbe, M., & Turenne, E.  (2018). The Inside-Out Prison Exchange Program instructor’s manual. Philadelphia, PA: The Inside-Out Center, Temple University.

Scott, R. (2019). Math instructors’ critical reflections on teaching in prison. In H. Rosario (Ed.), Mathematical outreach: Explorations in social justice around the globe (pp. 211–232). Hackensack, NJ: World Scientific.

SENCER (Science Education for New Civic Engagements and Responsibilities).  (2020a).  

Backgrounders. Retrieved from http://sencer.net/backgrounders/ 

SENCER (Science Education for New Civic Engagements and Responsibilities).  (2020b).  Model courses. Retrieved from http://sencer.net/model-courses/ 

Sequera V. G., Valencia, S., García-Basteiro, A. L., Marco, A., & Bayas, J. M. (2015). Vaccinations in prisons: A shot in the arm for community health. Human Vaccines & Immunotherapeutics, 11(11), 2615–2626. doi:10.1080/21645515.2015.1051269

Utts, J. (1999). Seeing through statistics (2nd ed.).  Pacific Grove, CA: Duxbury Press.

Download the article

Download (PDF, 2.89MB)

 

National Summer Transportation Institute: Increasing Career Awareness in Civil Engineering for Underserved High School Students

Abstract

Our nation needs to increase the number of students pursuing degrees in the fields of Science, Technology, Engineering, and Mathematics (STEM) and those leading to transportation-related careers.  In order to meet the demand for qualified graduates in transportation, it is necessary to diversify the pool of students entering college with an interest in these fields. The National Summer Transportation Institute (NSTI) is an educational initiative developed by the Federal Highway Administration (FHWA) and Department of Transportation (DOT).   The NSTI at City Tech was designed to increase awareness of transportation-related careers among New York City high school students. The structure of City Tech’s NSTI includes lectures, field trips, projects, and laboratory activities that promote the growth of each participant and strengthen their academic and social skills.  This NSTI program provides a model for broadening participation in STEM and building America’s STEM workforce.

Need to Increase Underrepresented Minorities in Civil Engineering

In order to remain competitive in a world of advancing technology, the United States needs to build a workforce with knowledge and skills in the fields of Science, Technology, Engineering, and Mathematics (STEM).  According to the U.S. Bureau of Labor Statistics, the projected number of STEM jobs was expected to grow 18.7% during the 2010–2020 period (Fayer, Lacey, & Watson, 2017). As the country’s economy and demographics change, it is important to increase the participation of underrepresented minority groups in STEM, including women (Gilliam, Jagoda, Hill, & Bouris, 2016; Briggs, 2016).  Given more opportunities to develop their capabilities in STEM, this untapped population can help to fill the critical STEM workforce gap (Science Pioneers, 2017; U.S. Department of Commerce, 2011).    

The U.S. Bureau of Labor and Statistics (2020) reports that the employment of civil engineers is projected to grow 6% from 2018 to 2028, an average rate faster than all other occupations. As the current U.S. infrastructure grows obsolete, civil engineers will be needed to manage projects that rebuild, repair, and upgrade bridges, roads, levees, dams, airports, buildings, and other structures. Because of the urgency to increase the civil engineering workforce, the Federal Highway Administration Office of Civil Rights (HCR) encourages academic outreaches to target groups who are underrepresented in the transportation workforce.  Females, economically disadvantaged students, and students with disabilities have been identified as underrepresented minorities in STEM (NSTIP, 2012). Based on the 2010 census report, the population of the United States is about 49.2% male and 50.8% female (Howden & Meyer, 2011). But although women make up half of the college student population and the general workforce, they account for only about one fifth of all bachelor’s degrees conferred in engineering in 2016 (National Center for Science and Engineering Statistics, 2017; Yoder, 2016) and a quarter of the STEM workforce (Landivar, 2013). The statistics become more dismal for minority women.  In 2012, only 3.1% of bachelor’s degrees in engineering were awarded to minority women (National Science Board, 2016). Specific to the civil engineering workforce, the Bureau of Labor Statistics in its Labor Force Statistics from the Current Population Survey (2016) states that a tenth of the jobs were held by women. Only 3.6% of the civil engineering positions were held by African Americans, 10.4% by Hispanics, and 7.7% by Asian Americans. While the population trends show that minorities will become the majority, the STEM workforce statistics clearly does not proportionally reflect this trend, particularly in civil engineering. Therefore, it is imperative that more programs be developed to promote the awareness of civil engineering occupations and to increase the participation of minorities and women in these fields.  

Benefits of Exposure to STEM at the K–12 level

Many studies have shown a correlation between STEM exposure at the K–12 level and a student’s interest in pursuing a STEM degree (Chiappinelli et al, 2016; Lomax, 2015; Means, Wang, Young, Peters, & Lynch, 2016; Naizer, Hawthorne, & Henley, 2014.) While the majority of American youth are exposed to STEM content in high school settings, out-of-school programming may be particularly important for sparking an interest in the STEM disciplines (Gilliam et al., 2016). Programs that engage high school students in unique STEM experiences will likely continue to play a profound role in recruiting and retaining bright young minds in the increasingly important STEM fields. Summer camps and experiences are especially important for students in urban and low-income areas, where underfunded science curricula and limited access to role models and mentors in STEM are common (Phelan, Harding, & Harper-Leatherman, 2017). Moreover, post-secondary institutions should prioritize programs that engage underrepresented students in hands-on science experiences during the high school years (Phelan et al., 2017).    The American Society of Civil Engineers (ASCE), recognizing the importance of inspiring the next generation of civil engineers, has established a website for precollege outreach, which provides resources including lessons, videos, and activities that promote civil engineering (ASCE, 2020).

The Landscape of Minority High School Students

National trends indicate that high school graduation rates have declined, with African Americans and Hispanic graduation rates being approximately 65% (Heckman & LaFontaine, 2010). Minority students are also far less likely to be college ready. This is particularly the case in underserved minority high schools, where students are the least prepared (ACT, 2015; Bryant, 2015; Moore et al., 2010).  Evidence of poor performance among minority high school students abounds not only in high school graduation rates, but also in SAT scores, Advance Placement courses, and enrollment in advanced mathematics courses (Musoba, 2010; Camara, 2013).  These poor academic performances have been attributed to poor academic preparation.  The National Assessment of Educational Progress (2015) found that overall only 33% of eighth grade students entering high school were proficient in mathematics. The corresponding percentages for African Americans and Hispanics were 13% and 19%, respectively. Since mathematics is the foundation of engineering degrees, there is an urgent need to strengthen these skills at the high school level.  

City Tech’s National Summer Transportation Institute

The National Summer Transportation Institute (NSTI) is an educational initiative developed by the Federal Highway Administration (FHWA) and Department of Transportation (DOT).   A transportation-focused career awareness program, it is designed to introduce high school students to all modes of transportation-related careers, provide academic enhancement activities, and encourage students to pursue transportation-related courses of study at the college/university level. Moreover, the NSTI focuses on addressing future transportation workforce needs by ensuring that the transportation industry has a well-trained, qualified, and diversified workforce.  City Tech was selected for funding by the FHWA and DOT in 2013, 2014, and 2015 to develop a NSTI for underserved urban high school students.  A grant is provided to cover all costs related to the program in order to provide the opportunity to participants on a tuition-free basis.  New York City is the ideal location, since it has both a diverse population and a complex transportation network.  The College’s location in downtown Brooklyn, New York, made it easy to recruit underserved high school students. City Tech is the designated senior college of technology within the 24-unit City University of New York, and it is the largest urban public university system in the nation. The college plays an important role nationally in the education of future scientists, engineers, technologists, and mathematicians for New York City (NYC) and the surrounding areas. 

The mission of the civil engineering technology department at City Tech is to prepare non-traditional students of diverse backgrounds to successfully enter a wide range of careers through a balance of practical knowledge, theory, and professionalism. The department’s mission aligns with the program objectives of the NSTI: to improve STEM skills, to promote awareness among middle and high school students (particularly minority, female, and disadvantaged youth) about transportation careers, and to encourage them to consider transportation-related courses of study in their higher education pursuits.

City Tech’s NSTI summer program includes lectures, field trips, projects, and laboratory activities which promote the growth of each participant and strengthen their academic and social skills.  The academic component is designed to reinforce the mathematics and science skills of the high school participants, to stimulate their interest in the various modes of transportation, and to expose them to new opportunities. The session topics are transportation related and are taught by certified high school teachers with a STEM background. 

The skills enhancement component is critical to the success of the program. The topics covered include critical thinking, problem solving, computer literacy, research, oral and written communication skills, and time management.

The length of the summer program has varied; it was one week long in 2013, two weeks long in 2014, and three weeks long in 2015. The daily program schedule was from 9 a.m. to 4 p.m. and included a lesson, activity, lunchtime speaker, and field trip.

Curriculum Modules

Five curriculum modules were implemented in the NSTI: (1) Bridges, (2) Land Transportation, (3) Air Transportation, (4) Public Transit and Railroad Transportation, and (5) Water Transportation. A summary of each module and the course objectives is presented below.

Bridges 

This module is designed to introduce participants to different types of bridges, structural forces, and geometry. Participants will be able to differentiate between materials and understand the force systems responsible for the stability of a bridge. The course objectives are to identify types of bridges, to understand the force distribution within a truss bridge, and to design a structurally sound bridge using principles of compression and tension.  

Land transportation

This module introduces the interrelationship of land use and transportation systems. Students will be introduced to concepts of energy, force, motion, speed, velocity, and acceleration. The course objectives are to introduce participants to the process of land use and effective transportation systems, to identify data sources needed to make prudent transportation decisions, and to demonstrate an understanding of land use planning and ways to minimize transportation problems (i.e., congestion, noise, pollution).

Air transportation

This module introduces students to the concepts of flight theories, aircraft performance, flight instruments, gravity, air navigation, and space. Students will be introduced to concepts of force, projectile motion, center of gravity, velocity, and aerodynamics. The course objectives are to introduce participants to flight theories as they relate to airplanes and space and to explore a historic aircraft carrier and space shuttle.

Public transit and railroad transportation

This module describes the history of railroads and public transit.  Participants will be able to summarize advantages and disadvantages of public transit systems in use today, in particular in the New York City area. The course objectives are to explore the social history of New York City, subway and station design, transit development, construction, and impact over time.

Water transportation 

This module is designed to give participants an opportunity to learn the fundamental regulations and responsibilities of safe water transportation. Students will be introduced to the concepts of buoyancy and density, as well as to the engineering design process. The course objectives are to inform participants of the best water travel practices, and to identify possible threats and solutions to promote safe waterways.

Speakers

Participants were able to interact with professionals in the transportation field.  These professionals were invited guest speakers sharing their own academic experiences and challenges with the participants while highlighting their careers and promoting the field of transportation. Speakers were representative of the various fields related to transportation and engineering.  

Staff

The program staff consists of a project director, two instructors, and two academic aides.  The primary role of the project director is to develop, implement, and direct all phases of the program, schedule, and budget and to supervise the program staff, develop curriculum, and provide laboratory activities and resource materials.

The primary role of the instructors is to provide daily academic instruction, interact with participants and administrative staff, and develop curriculum.  The instructors are certified high school teachers, and as such have the training and background required to deliver the STEM-focused lessons and activities.  

The academic aides assist the instructors throughout the day, set up laboratory activities, assist with coordination of field trips, and assist with orientation and closing activities. The academic aides are typically graduates of the civil engineering technology associate degree program at City Tech.  The academic aides are also recruited from a group of trained peer leaders on campus.  As peer leaders the academic aides bring to the program their knowledge of pedagogy and techniques for group facilitation. 

Activities

The curriculum is reinforced with projects and laboratory activities. Participants are engaged in the engineering design process through hands-on activities and computer simulation applications.  Computer-based activities include simulating bridge building and city planning.  Hands-on activities include building a model bridge, solar car, boat, and rocket.  The activities were preceded by a lesson or guest speaker introducing the relevant topics and careers in transportation.  Participants worked both independently and collaboratively to complete the projects in preparation for testing and display. 

Field Trips

Several field trips were organized during the NSTI. The participants had the opportunity to visit the Intrepid Sea, Air, and Space Museum, the NYC Transit Museum, the Brooklyn Navy Yard, and the U.S. Coast Guard Command Center, as well as John F. Kennedy International Airport.  Each trip included a customized tour for the group aligned with the program focus of transportation and engineering. 

Sample schedules are included as Figures 1 and 2. 

Week 1 Sample Schedule
Week 1 Sample Schedule
Student Eligibility, Recruitment and Selection

At the time of participation, applicants must be a rising ninth, tenth, eleventh, or twelfth grader, qualify for enrollment in algebra, and hold a minimum cumulative GPA of 2.0 on a 4.0 scale.  Graduates of the NSTI program are not eligible to repeat the program.  The students are primarily recruited from City Poly High School and STEP-UP, a program of the McSilver Institute for Poverty Policy and Research. City Poly High School opened in September 2009 as one of four state-approved career and technical education (CTE) demonstration sites in New York City.  The New York State Department of Education (NYSED) indicates that the 2015–2016 student demographics for City Poly were as follows: 75% black, 16% Hispanic, 4% Asian, 3% White, and 2% Other. In addition, 76% of the student population were economically disadvantaged (NYSED 2016).  STEP-UP is a program designed by African-American and Latino adolescents (14 to 17 years of age) experiencing significant academic, social, and emotional issues for teens in similar circumstances. The STEP-UP participants were from Central Park East (CPE) High School. The NYSED has supplied the following demographics for CPE students in 2015–2016: 24% Black, 62% Hispanic, 8% Asian, 4% White, and 1% Other. Eighty-nine percent of the student population are economically disadvantaged (NYSED, 2016). These demographics are representative of underserved high school students. 

Applicants submit a complete application with one letter of recommendation from a teacher or guidance counselor and a statement regarding their reasons for wanting to participate in the program and how the NSTI can assist in meeting their academic and career goals.  The program director selects a cohort of 20 students, and a select number of applicants may be placed on a waiting list.  

Methodology

Participants

A total of 41 high school students participated in the NSTI from years 2013-2015.  There were 12 participants in 2013, which was a one-week program, 15 in 2014, which was a two-week program, and 14 in 2015, which was a three-week program. There were at total of 24 (58.5%) males and 17 (41.5%) females.  Among the 41 high school students, 22 (53.7%) identified themselves as African American (non-Hispanic), eight (19.5%) as Hispanic, nine (22.0%) as Asian/Pacific Islander, two (4.9%) as Caucasian, and one failed to respond. The average age of the participants was 15.7 years.  The average New York State Regent Mathematics and Science scores of the participants were 82.9 and 80.0, respectively. 

Data analysis

On the last day of the NSTI, the high school students were asked to respond to statements regarding four areas: (1) speakers, (2) staff, (3) activities, and (4) field trips. A Likert scale with 1 indicating “strongly disagree” and 4 indicating “strongly agree” was used.  Table 1 is a summary of the responses by year and collectively over the three years.  

A one-way analysis of variance (ANOVA) was used to determine whether the mean responses were statistically significant among the years.  Table 2 lists the responses that showed statistically significant differences. A Tukey test was used to follow up to determine the mean differences between each year.  Overall the responses of the participants in 2014 and 2015 were most strongly positive to the statements that the speakers were well organized, the students were academically challenged by the speakers, the speakers responded well to the questions posed to them, and the staff was very interested in the students’ career awareness. The activities and the field trips statements were also evaluated more positively by the 2014 and 2015 groups than the 2013 group.  

Some of the high school students’ reflections regarding the NSTI: 

The U.S. Coast Guard trip was fun. It made me consider joining! (2013 participant) 

John F. Kennedy Airport trip was a very new experience.  The tour showed me there [were] more [jobs] in air transportation. (2013 participant)

I was very interested in Intelligent Transportation Systems; there were more things about information and technology and how it is used in transportation. (2013 participant)

In this first week, I have already learned a lot about a diverse range of topics from bridges, trains and kites. My favorite experience in the program so far has been making a kite constructed of string, straws and tissue paper, with my partner. I really enjoyed building a workable kite from few materials and being able to test the invention later. I had never really built something from nothing. The project also forced me to work with and depend on my partner. It was fun to collaborate and we were really proud with the end product. (2015 participant) 

Table 1: Means and Standard Deviations for Students Satisfaction Survey Responses by Year
Table 2: One-way ANOVA Results

Conclusion

The results of the study showed high school students participating in the NSTI responded positively to the program.  The participants felt academically challenged by the speakers, and they felt strongly that the speakers were able to address their questions and concerns. Students benefit from role models in STEM and can expand their interest in STEM by exposure to informal STEM-related learning opportunities (Weber, 2011).  Hands-on activities can stimulate interest in STEM and help students gain confidence in their ability to approach STEM activities (Colvin, Lyden, & León de la Barra, 2013; Ziaeefard, Miller, Rastgaar, & Mahmoudian, 2017).  The students also found the field trips very informative.  Many underserved students do not have the opportunity to be exposed to various careers, and field trips allow them to connect the importance of civil engineering to the real world.   

This study also found that the length of the summer program made a difference in the participants’ responses.  The participants responded more positively to the speakers, staff, activities, and field trips when the program was either two or three weeks long.  Better feedback responses came from the participants in the two-week program.

Lessons Learned

The NSTI offers an opportunity for students to be exposed to civil engineering and transportation fields while reinforcing their math and science skills.  The most significant challenge of the program is recruitment, since the average high school student may not recognize the value of a STEM summer program. Several outreach efforts to advisors, parents, and counselors were made to encourage participation. The three-week program provided the students with one high school elective credit; however, it was difficult for students to commit for a three-week period because many of them had summer jobs.  For two consecutive years, the program offered participants a stipend which helped offset the costs of participation.  In 2015 the guidelines removed the allowable costs of stipends making recruitment more challenging.  Students from these underrepresented populations residing in the five boroughs typically have to work during the summer to cover their expenses and assist their families.  Participation in the NSTI offers a wonderful opportunity; however, it means the students have no income for the duration of their participation, and they have the added the cost of transportation.  This study reinforces that stipends will allow for greater diversity in participation.  

Epilogue

City Tech was selected to host the NSTI in July 2020; however, due to the COVID-19 pandemic the program was offered in a virtual platform. The curriculum remained the same, participants were expected to be available Monday–Friday from 9 a.m.–4 p.m. during the two-week period.  Lessons and guest lectures were delivered via Zoom. Field Trips were delivered as virtual reality field trips using available technology.  Students were provided a supply kit to complete projects individually and participated remotely in software simulations.  In order to ensure that all eligible applicants could participate in the program, students were provided the opportunity to obtain a loaner Chromebook for the duration of the program.  In addition, a stipend was provided to each participant to offset the loss of income they might incur by participating in the program.  The program was a success and students were able to benefit from the experience in an alternate format. 

Acknowledgements

The authors thank the Federal Highway Administration and the Department of Transportation for their support and the many speakers throughout the years for their time.  We also acknowledge the instructors, Wandy Chang, Henry Arias, and Steven Coyle for their dedication to the program.

This project report is dedicated in loving memory of Janet Liou-Mark, a role model and a champion for all who were fortunate enough to know her.

Authors

Melanie Villatoro

Melanie Villatoro is an associate professor in the Department of Construction Management and Civil Engineering Technology at the New York City College of Technology (City Tech). She earned her BE in Civil Engineering from the Cooper Union and her MS in Geotechnical Engineering from Columbia University. Her outreach events target groups underrepresented in STEM with the goal of increasing the number of diverse qualified students entering the fields of STEM, particularly engineering.

 

 

Janet Liou-Mark

Janet Liou-Mark is a professor of mathematics at City Tech, and she holds a PhD in Mathematics Education. Her research focuses on developing and evaluating programs that help women and underrepresented minority and first-generation college students to remain in school and successfully graduate with STEM degrees. She is the interim director of Faculty Commons.

References

ACT. (2015). The condition of college and career readiness 2015: African American students. Retrieved from http://equityinlearning.act.org/wp-content/uploads/2016/06/2015-african-american.pdf.

American Society of Civil Engineers. (2020). American Society of Civil Engineers Pre-College Outreach. Retrieved from https://www.asce.org/pre-college_outreach/

Briggs, C. (2016). The policy of STEM diversity: Diversifying STEM programs in higher education. Journal of STEM Education: Innovations & Research, 17(4), 5–7.

Bryant, R. T. A. F. (2015). College preparation for African American students – CLASP. Retrieved from https://www.clasp.org/sites/default/files/public/resources-and-publications/publication-1/College-readiness2-2.pdf

Camara, W. (2013). Defining and measuring college and career readiness: A validation framework. Educational Measurement: Issues and Practice, 32(4), 16–27.

Chiappinelli, K. B., Moss, B. L., Lenz, D. S., Tonge, N. A., Joyce, A., Holt, G. E….Woolsey, T. A. (2016). Evaluation to improve a high school summer science outreach program. Journal of Microbiology and Biology Education17(2), 225–236.

Colvin, W., Lyden, S., & León de la Barra, B. A. (2013). Attracting girls to civil engineering through hands-on activities that reveal the communal goals and values of the profession. Leadership and Management in Engineering, 13(1), 35–41. doi:10.1061/(ASCE)LM.1943-5630.0000208

Fayer, S., Lacey, A., & Watson, A. (2017). BLS spotlight on statistics: STEM occupations – past, present, and future. Washington, D.C.: U.S. Department of Labor, Bureau of Labor Statistics. Retrieved from https://www.bls.gov/spotlight/2017/science-technology-engineering-and-mathematics-stem-occupations-past-present-and-future/home.htm

Gilliam, M., Jagoda, P., Hill, B., & Bouris, A. (2016). An alternate reality game to spark STEM interest and learning among underrepresented youth. Journal of STEM Education: Innovations and Research, 17(2), 14–20.

Heckman, J. J., & LaFontaine, P. A. (2010). The American high school graduation rate: Trends and levels. The Review of Economics and Statistics, 92(2), 244–262.

Howden, L. M., & Meyer, J. A. (2011). Age and sex composition: 2010. Washington, D.C.: U.S. Department of Commerce, Economics and Statistics Administration, U.S. Census Bureau.  

Landivar, L. C. (2013). Disparities in STEM employment by sex, race, and Hispanic origin (Rep. No. ACS-24). Washington, D.C.: U.S. Department of Commerce, U.S. Census Bureau. Retrieved from https://www.census.gov/library/publications/2013/acs/acs-24.html

Lomax, R. A. (2015). Pathways to STEM occupations: Advanced curriculum and college outreach programs during high school (Unpublished doctoral dissertation). University of Texas at Arlington.

Means, B., Wang, H., Young, V., Peters, V. L., & Lynch, S. J. (2016). STEM‐focused high schools as a strategy for enhancing readiness for postsecondary STEM programs. Journal of Research in Science Teaching53(5), 709–736.

Moore, G. W., Slate, J. R., Edmonson, S. L., Combs, J. P., Bustamante, R., & Onwuegbuzie, A. J. (2010). High school students and their lack of preparedness for college: A statewide study. Education and Urban Society,42(7), 817–838. doi:10.1177/0013124510379619

Musoba, G. D. (2010). Accountability policies and readiness for college for diverse students. Educational Policy, 25(3), 451–487. doi:10.1177/0895904810361721 

Naizer, G., Hawthorne, M. J., & Henley, T. B. (2014). Narrowing the gender gap: Enduring changes in middle school students’ attitude toward math, science and technology. Journal of STEM Education: Innovations and Research, 15(3), 29–34.

National Assessment of Educational Progress. (2015) The nation’s report card: 2015 mathematics & reading assessments. Retrieved from http://www.nationsreportcard.gov/reading_math_2015/#mathematics/acl?grade=8

National Center for Science and Engineering Statistics. (2017). Women, minorities, and persons with disabilities in science and engineering (Rep. No. NSF 17-310). Alexandria, VA: National Science Foundation.

National Science Board. (2016). Science and engineering indicators 2016 (Rep. No. NSB-2016-1). Alexandria, VA: National Science Foundation.

New York State Department of Education. (2016). City Polytechnic High School enrollment, 2015–16. Retrieved from https://data.nysed.gov/enrollment.php?year=2016&instid=800000065480

Phelan, S. A., Harding, S. M., & Harper-Leatherman, A. S. (2017). BASE (Broadening Access to Science Education): A research and mentoring focused summer STEM camp serving underrepresented high school girls. Journal of STEM Education: Innovations and Research18(1), 65–72.

Science pioneers. (2017). Retrieved from http://www.sciencepioneers.org/parents/why-stem-is-important-to-everyone

U.S. Bureau of Labor Statistics, Division of Labor Force Statistics. (2016). Labor force statistics from the current population survey 2016. Retrieved from https://www.bls.gov/cps/cpsaat11.html  

U.S. Bureau of Labor Statistics, Office of Occupational Statistics and Employment Projections. (2020). Occupational outlook handbook, civil engineers. Retrieved from https://www.bls.gov/ooh/architecture-and-engineering/civil-engineers.html

U.S. Department of Commerce. (2011). STEM: Good jobs now and for the future (Issue brief No. ESA 03-11). Washington, DC: Office of Policy and Strategic Planning, U.S. Department of Commerce.

U.S. Department of Transportation. (2019). National Summer Transportation Institute program –civil rights | Washington, DC: Federal Highway Administration. Retrieved from https://www.fhwa.dot.gov/civilrights/programs/nsti_faq.cfm

Weber, K. (2011). Role models and informal STEM-related activities positively impact female interest in STEM. Technology and Engineering Teacher, 71(3), 18–21.

Yoder, B. L. (2016). Engineering by the numbers. Washington, DC: American Society for Engineering Education. Retrieved from https://www.asee.org/documents/papers-and-publications/publications/college-profiles/16Profile-Front-Section.pdf

Ziaeefard, S., Miller, M. H., Rastgaar, M., & Mahmoudian, N. (2017). Co-robotics hands-on activities: A gateway to engineering design and STEM learning. Robotics and Autonomous Systems, 97, 40–50.

Download the article

 

Download (PDF, 3.79MB)

Combining Cross-Disciplinary STEM Collaborations and Academic Service Learning to Help a Community in Need

Abstract

This project report presents a multidisciplinary Faculty Learning Community model to foster civic engagement in STEM classes. It focused on first-year Chemistry, Math, and Scientific Inquiry courses and incorporated Academic Service Learning in a project to build solar cell phone chargers for a school in Puerto Rico recovering from the effects of Hurricane Maria in 2017. The project provided hands-on experiences for the students, with the tangible outcome of building the solar chargers for people in need. Student engagement was measured through surveys and reflective assignments; the students responded positively to their work and their sense of fulfilling the St. John’s University mission. The members of the Faculty Learning Community have engaged in ongoing collaborative relationships.

KeyWords: Student Peer Mentoring, Knowledge Transfer, Academic Service Learning

Introduction

Faculty members from four different departments, Chemistry, Physics, Math, and Core Studies, were brought together as a Faculty Learning Community (FLC) under  a St. John’s University grant to improve undergraduate STEM education at St. John’s (Cox, 2004; Baker, 1999). Expectations for the cohort were to attend the 2017 Association of American Colleges and Universities (AAC&U) Transforming STEM Higher Education conference, to disseminate their learning experiences to the wider St. John’s faculty, and to develop their own STEM project (Association of American Colleges & Universities, 2017). Inspired by an introductory talk at the AAC&U meeting, the cohort developed a multidisciplinary Academic Service Learning (ASL) project in which St. John’s students constructed solar cell phone chargers for students at a Puerto Rican school impacted by Hurricane Maria (Escuela Segunda Unidad Botijas #1 in Orocovis). ASL is a known high-impact practice that provides the potential for applied learning and civic engagement (Strage, 2000; Kuh, O’Donnell, & Reed, 2013). In our project, students in first-year Chemistry, Mathematics, and Scientific Inquiry (a required class for non-science majors) used their scientific knowledge and skills to help others by building 100 solar phone chargers for students who were without power in a mountainous region in Puerto Rico. The participants in this ASL project met outside of their scheduled class times to collaborate on assembling the chargers, participate in discussions with our Puerto Rican partners, and create videos on the construction process and the use of the chargers. Additional videos were produced by the St. John’s students in which they reflected on their involvement in the project.

Our FLC illustrates the power of this structure to encourage interdisciplinary cooperation and to build stronger ties among faculty members, which benefits the faculty, students, and the community beyond the university (O’Neil, Yamagata, Yamagata, & Togioka, 2012). This project, with its focus on civic engagement, integrated STEM learning and real life applications and excited the students about the tangible and practical impacts of STEM (Turrini, Dörler, Richter, Heigl, & Bonn, 2018; Strage, 2000). Furthermore, current research on learning acknowledges the many factors beyond classroom pedagogy and specific content—including individual, social, cultural, and institutional influences—that affect learning, for both faculty and students (Pandya, Dibner, & Committee on Designing Citizen Science to Support Science Learning, 2018).

Faculty Learning Communities

Faculty Learning Communities typically involve voluntary groups of teachers, students, and administrators with a clear sense of membership, common goals, and extensive face-to-face interaction (Baker, 1999). Our FLC differed in some ways from that model in that it was a closed group, and the members were invited to join by the Dean and a faculty leader who acted as a group facilitator. The goals of the FLC were to develop a project and to share knowledge with STEM colleagues within a one-year time frame. Following best practices, the participants represented faculty from diverse disciplines (Sonnenwald, 2007; Hunt, Layton, & Prince, 2015; FerriniMundy, 2013). Even though the members were largely unacquainted with one another at the outset, the FLC provided an opportunity for increased engagement across the disciplines.

The FLC was sent to the AAC&U conference to learn about new pedagogies and tools that they could bring back to the wider university STEM community. Most of the members of this FLC had not been exposed previously to some of these newer pedagogies. During the opening welcome, the Conference director challenged the attendees to consider projects that would help the people of Puerto Rico impacted by Hurricane Maria. Having decided to address this challenge by developing a project that built on our strengths in ASL, the group designed  a project that would provide students with an applied science-related activity that would also benefit people in Puerto Rico.

As a result of attending the conference, the FLC became a more coherent unit that provided a foundation from which to learn about each person’s discipline and personality. Exposure to our various disciplines, approaches to research, and our professional trajectories led to creative collaborations and problem-solving (Olson, Labov, & National Research Council (U.S.), 2014). This in turn led to a greater understanding of the strengths of each member and ultimately to a successful working relationship that is ongoing.

Project Overview

In response to the charge to create projects to help the victims of the hurricane, the FLC decided to focus on a STEM-centered ASL project that would aid this population. Realizing that many of the communities of Puerto Rico remained without electricity, the idea for a solar powered project emerged. Our ASL office identified Nuestro Ideal (Nuestroideal.org, n.d.), a local, non-governmental organization, as an effective collaborator. Nuestro Ideal selected a school without electricity in Puerto Rico. With funds provided by St. John’s University, the FLC acquired materials and organized classroom opportunities to bring together the different classes taught by the members of the FLC. Upper-level students from the Society of Physics provided assistance by preparing materials as well as acting as coaches during the assembly process. Two out-of-class sessions were scheduled for the project, one to learn the skills needed to build the chargers, and one to assemble them. An online repository was established for students to post video reflections on their work and to tie their experience to what they were learning in their individual classes.

The goals for the project were to:

  • Provide a STEM-based project with a civic engagement focus for a community in need in Puerto Rico.
  • Create a STEM experiential learning environment for STEM and non-STEM students.
  • Ensure that the hands-on applied project was accessible for students with different experiences and academic backgrounds.
  • Foster collaborations among these students in a multi-disciplinary project.
  • Create an opportunity for the upper-class students to share their expertise and enthusiasm for science.
Project Process

Upon receipt of the solar cell phone charger components, the Society of Physics students  helped  design and test the prototypes, pre-assembled the wiring harnesses with blocking diode housings, and fastened the connector housings to the solar cell frames (Fortmann, Lazrus, Rosso, Catrina, & Hyslop, 2019). At the initial ASL session, the students learned to solder and make reliable electrical connections, skills necessary for making the final products. They also learned about the school in Puerto Rico and the students who would receive the chargers. At the second session, the wires from the solar panels were soldered and attached to the USB connectors. All soldered connections were covered with silicon to prevent rust or disconnections. The entire assembly process was live-streamed via WebEx to the teachers and students in PR. The student groups were also asked to create two videos, one in which they described what they were doing and how to use the chargers and the other a reflective piece on their experiences. Two instructional videos were made by students for our partners, one in English, the other in Spanish, explaining the process of using the final product. A local TV station, upon hearing about the project, sent a news team to interview students about the impact of their experience (Fox 5 News, 2018). The solar cells were then packed and shipped to the school. We received pictures, videos, and thank you notes from the faculty and students in Puerto Rico.

Outcomes

We worked with Nuestro Ideal to provide a civic engagement focus with the community in Puerto Rico. With their help it was possible to set up a weblink during the assembly process, which fostered a greater sense of connection between our students and the recipients. Our students were able to see the environment in which the chargers would be used and gain a sense of purpose for their activity.

The project needed to be suitable for students with different academic backgrounds, experiences, and motivations. It became clear to the faculty that the students would need assistance in learning to solder and in understanding how solar cells work. We addressed this by having the Society of Physics students work with the groups learning to assemble the solar chargers. This also gave the upper-class students an opportunity to share their expertise and excitement for science. Students come to their classes with different motivations; when an opportunity for real-world applications of scientific skills is provided, the incentive to learn increases as students perceive the usefulness of their work (Committee on How People Learn II, 2018; see also student comments below).

In order to foster collaborations among the students in the different classes, they worked in groups of three to five on each charger and video. Just as the FLC worked across disciplines, an effort was made to form groups across the different classes. St. John’s University is one of the most diverse institutions in the country, and many of our students related to the recipients and the needs of the project, sharing their knowledge with their peers.

Evaluation

A survey was sent to all St. John’s students involved in the project. The results showed positive responses in evaluating scientific information and in their connection to the University and its mission. The results were strongest for the math and chemistry cohorts, with more than 60% of the students responding positively. In particular, the written responses from the math students indicated a new understanding of practical applications for STEM and a realization of the impacts of STEM on people’s lives. This was also the case in Strage’s work with ASL and lecture classes (Strage, 2000). A popular response noted that the experience“opened me up to the global aspects of STEM.” One possible improvement would have been the provision of more scaffolding for the ASL project within each individual class. This would have allowed the students to feel a greater ownership of the activity. In addition to the reflection and instruction videos, the use of process summaries might also have helped students integrate the new skills they were learning and reflect on their applications in the real world to a greater degree (Smith, n.d.; Keranen & Kolvoord, 2014). These types of activities expand the classroom learning experience, and, furthermore, expose students to the different types of knowledge that their peers bring to the project (Committee on How People Learn II, 2018; Olson et al., 2014).

The FLC experience has had a lasting impact on the participating faculty members, developing new cross-disciplinary relationships and leading to a desire to explore additional outreach projects together. The results of this initial project led to poster presentations at the 2018 AAC&U Transforming STEM Higher Education conference and at the 2019 New York City SENCER meeting. The project also had an impact on the Society of Physics students, and importantly, a large number of Society of Physics students in the 2018 graduating class intended to continue their education in engineering graduate school. Several student participants in this ASL project went on to engage in undergraduate research as second-year students.

Conclusions

The collaborations within the FLC, between the faculty members and administration, and between St. John’s and Nuestro Ideal created an opportunity for civic engagement within the STEM disciplines. In the short term, the group has applied for a small internal St. John’s grant to continue collaborating with Nuestro Ideal to identify new projects, including providing larger solar cell systems for water pumps in isolated farmhouses and transferring upkeep knowledge to the recipients. It also led to an additional ASL project in the fall of 2019 wherein students provided a handbook of seed bank best practices based on research to Nuestra Ideal for dissemination to a local farm project. Beyond that, the success of this project and the FLC led this group to apply for an NSF Ethical and Responsible Research grant. In this future project the group intends to assess methods of exposing students through mentoring, ASL, and personal interactions to ethical behavior in STEM fields, especially with regard to research choices and dissemination.

Authors

Florin Catrina

Florin Catrina, an associate professor of mathematics, has been at St. John’s University since 2006. He is active in the Mathematical Association of America and is a mentor for Project NExT, a professional development program for new or recent Ph.D.s in the mathematical sciences. His research focuses on non-linear analysis of partial differential equations.

 

 

Charles Fortmann

Charles Fortmann is currently an associate professor in the Department of Physics. Before joining the faculty at St. John’s, he was the vice president for research at Idalia Solar Technologies. He serves as the faculty advisor for the Society of Physics and Sigma Pi Sigma physics honor society.

 

 

 

Alison Hyslop

Alison G. Hyslop, an associate professor of chemistry, has been at St. John’s University since 2000. She has served as the faculty coordinator for STEM Faculty Learning Communities at St. John’s for three years, is active in the Women in Science program, and was the chair of the Department of Chemistry from 2012 to 2018 and the coordinator for Scientific Inquiry from 2006 to 2012.

 

 

Paula Lazrus

Paula Kay Lazrus is an associate professor in the Institute for Core Studies and Department of Sociology and Anthropology at St. John’s University, and has been at St. John’s since 2003. She is active in the Reacting to the Past community and has served on its Board of Directors since 2016. As an archeologist, she has participated in the Bova Marina Archaeological Project and is active in the Archaeological Institute of America and the Society for American Archaeology.

 

 

Richard Rosso

Richard Rosso, an associate professor of chemistry, has been at St. John’s University since 1999. He was the chair of the Department of Chemistry from 2006 to 2012, and has served the American Chemical Society both locally and at the national level.

References

Association of American Colleges & Universities. (2017). 2017 Transforming STEM higher education: Discovery, innovation, and the value of evidence. Retrieved from https://www.aacu.org/ conferences/stem/17/

Baker, P. (1999). Creating learning communities: The unfinished agenda. In Bernice A. Pescosolido and Ronald Aminzade (Eds.). The social worlds of higher education: Handbook for teaching in a new century (pp. 95-109). Thousand Oaks, CA: Pine Forge Press.

Committee on How People Learn II: The Science and Practice of Learning, Board on Behavioral, Cognitive, and Sensory Sciences, Board on Science Education, Division of Behavioral and Social Sciences and Education, and National Academies of Sciences, Engineering, and Medicine. (2018). How people learn II: Learners, contexts, and cultures. Washington, DC: National Academies Press. https://doi.org/10.17226/24783 

Cox, M. D. (2004). Introduction to faculty learning communities. New Directions for Teaching and Learning, 2004(97), 5–23. https://doi.org/10.1002/tl.129

Ferrini-Mundy, J. (2013). Driven by diversity. Science, 340(6130), 278. https://doi.org/10.1126/science.1235521

Fortmann, C., Lazrus, P., Rosso, R. Catrina, F. & Hyslop, A. (personal communication 2019)

Fox 5 News. (2018). Solar cell phone chargers from St. John’s University to Puerto Rico. Fox 5 News. April 16, 2018. Retrieved from http://mms.tveyes.com/MediaCenterPlayer.aspx?u=aHR0cD ovL21lZGlhY2VudGVyLnR2ZXllcy5jb20vZG93bmxvYWR nYXRld2F5LmFzcHg/VXNlcklEPTE3NDAxMCZNRElE PTk2NzQ3NTkmTURTZWVkPTM4OTgmVHlwZT1N ZWRpYQ%3D%3D

Hunt, V., Layton, D., & Prince, S. (2015). Why diversity matters. McKinsey & Company. Retrieved from https://www.

mckinsey.com/business-functions/organization/our-insights/

why-diversity-matters

Keranen, K., & Kolvoord, R. (2014). Making spatial decisions using GIS and remote Sensing: A workbook. Redlands, CA: ESRI Press.

Kuh, G. D., O’Donnell, K., & Reed, S. D. (2013). Ensuring quality & taking high-impact practices to scale. Washington, DC: Association of American Colleges and Universities.

Nuestroideal.org. (n.d.). Retrieved from http://www.nuestroideal. org/

Olson, S., Labov, J. B., & National Research Council (U.S.). (Eds.). (2014). STEM Learning is everywhere: Summary of a convocation on building learning systems. Washington, DC: National Academies Press.

O’Neil, T., Yamagata, L., Yamagata, J., & Togioka, S. (2012). Teaching STEM means teacher learning.” Phi Delta Kappa International, 94(1), 36–38, 40.

Pandya, R., Dibner, K. A., & Committee on Designing Citizen Science to Support Science Learning (Eds.). (2018). Learning through citizen science: Enhancing opportunities by design. Washington, DC: National Academies Press. https://doi. org/10.17226/25183

Smith, E. (n.d.). LibGuides: MYP Personal Project 2018/19: Process Journal. Retrieved from //gemschicago.libguides.com/c. php?g=829169&p=5920504

Sonnenwald, D. H. (2007). Scientific Collaboration. Annual Review of Information Science and Technology, 41(1), 643–681. https:// doi.org/10.1002/aris.2007.1440410121

Strage, A. (2000). Service-learning as a tool for enhancing student outcomes in a college-level lecture course. Michigan Journal of Community Service Learning, 2000, 5–13.

Turrini, T., Dörler, D., Richter, A., Heigl, F., & Bonn, A. (2018). The threefold potential of environmental citizen science generating knowledge, creating learning opportunities and enabling civic participation. Biological Conservation, 22, (September), 176–186. https://doi.org/10.1016/j.biocon.2018.03.024

Download the article

Download (PDF, 2.55MB)

 

STEM Teacher Leadership Development Through Community Engagement

Abstract

Academic service-learning through community engagement in a museum provides an opportunity for teacher leadership development in science, technology, engineering, and mathematics (STEM) education. Twenty student volunteers from teacher education in a public university took part in service-learning teacher leadership activities in STEM education through a local museum. A preliminary analysis of student responses to self-reflection questions indicated emerging themes predominantly in the areas of self-confidence development and depth of understanding of the topic, followed by audience STEM learning and sense of self-responsibility. Plans for future direction are explored with implications for teacher leadership in STEM education.

Keywords: STEM education, preservice teacher leadership, community engagement, museum, informal science education, service-learning, efficacy, student volunteer

Introduction

This paper describes academic service-learning by student volunteers in teacher education through community engagement in science, technology, engineering, and mathematics (STEM)  education  in  a  museum,  with a focus on developing teacher leadership. Calls for a workforce that is STEM skilled are being heard from leaders in business, government, and education. For example, the Committee  on  STEM  Education  of  the National Science and Technology Council (2018) stated that “the nation is stronger when all Americans benefit from an education that provides a strong STEM foundation for fully engaging in and contributing to their communities, and for succeeding in STEM-related careers, if they choose…. Even for those who may never be employed in a STEM-related job, a basic understanding and comfort with STEM and STEM-enabled technology has become a prerequisite for full participation in modern society” (p. 5). According to President Donald Trump, his administration “will do everything possible to provide our children, especially kids in underserved areas, with access to high-quality education in science, technology, engineering, and  mathematics”  (Office  of   Science and Technology Policy, 2018, n.p.). How to transform such reform calls into action in K–12 classrooms is an important question. This article draws attention to the connection between teacher leadership in STEM areas and the university experiences and opportunities of aspiring teachers. Specifically, does academic service learning in STEM through community engagement in a local museum develop teacher leadership skills?

Teacher Leadership

For the purpose of this study, teacher leadership in pre-service STEM education is defined as follows: It is a process of developing leadership qualities (e.g., knowledge, dispositions, skills) in preservice teachers  by  engaging in volunteer activities that extend beyond classrooms into the community, tapping into local STEM resources (Ado, 2016; Bond, 2011; Teacher Leadership Exploratory Consortium, 2011; Center for Strengthening the Teaching Profession, 2018; Wenner & Campbell, 2018).

Bond (2011) in a review of teacher leadership recommended that preservice teachers be given opportunities to serve and learn through volunteer activities in their local communities. Ado (2016) suggested “improving outreach and collaboration with families and community” (p. 15) for teacher leadership development. On the other hand, in a study of teacher leadership, Ado (2016) noticed that unless prompted, preservice teachers failed to address “improving outreach and collaboration with families and communities” (p. 15) as part of teacher leadership development. It is a reflection of our present system of education and preparation of teachers, which does not value outreach and community engagement. The Teacher Leadership Exploratory Consortium (2011) and the Center for Strengthening the Teaching Profession (2018) have recommended that preservice and in-service teachers engage in outreach activities in their local communities as  a part of the process for developing teacher leadership.

Classroom teacher efficacy is key to student learning in K–12 education (Hattie & Timperely, 2007) and teacher leadership impacts  student  learning  (Stronge & Hindman, 2003; Kumar & Scuderi, 2000). Without teacher leaders in our schools who are well  prepared and confident enough to lead the STEM education reform, calls for STEM reform may not come to fruition. Teacher leadership also has the potential to retain teachers through support as they enter the teaching profession and as experienced teachers. In his study, Buchanan (2010) found that “lack of support emerged as the single strongest predictor of a decision to leave the profession” (p. 205). According to Danielson (2006), “precisely because of its informal and voluntary nature, teacher leadership represents the highest level of professionalism. Teacher leaders are not being paid to do their work; they go the extra mile out of a commitment to the students they serve” (p. 1). Students in this STEM program volunteer and already represent a group of individuals who are willing to go the extra mile.

Carlone and Johnson (2007) identified three constructs that support the development of teacher leaders:

  • Competence – knowledge and understanding supportive of leadership pursuits
  • Performance – social performances of relevant teacher leadership practices
  • Recognition – recognition by oneself and others as a teacher leader

In this context, an opportunity for undergraduate teacher education students to volunteer in a museum supports teacher leadership development in STEM education through community engagement. Students develop their STEM skills along with their leadership skills through deepening their content knowledge, participating in teacher leadership practices as presenters in the museum, and receiving recognition by others as leaders in the STEM topic they choose. Students have the additional opportunity to identify creative ways to tap into community resources, to enrich learning experiences for their students, to connect classroom lessons with STEM outside the classroom, and to serve as change agents.

Community Engagement

It was after the publication of the article titled “Opportunities for Teachers As Policymakers” (Kumar & Scuderi, 2000) that volunteer opportunities for teacher leadership development in informal STEM education through community engagement were created for Florida Atlantic University (FAU) undergraduate students in the course “Principles and Methods: K-9 School Science.” In the era of applying business models to the administration of schools and colleges, teachers are told what to do rather than given the opportunity to be professionals capable of making independent professional decisions in educational settings. This is reflected in the National Survey of Science and Mathematics Education (NSSME+) in the United States (Banilower et al., 2018). According to this NSSME+ survey, less than half of science teachers engaged in leadership activities, and elementary science teachers (8%) were less likely to lead a professional learning community in science than their high school peers. In this context, instilling in teachers, especially those in training, the confidence of leadership is essential if true education reform is the goal of the myriad of reform calls in STEM education (Kumar, 2019).

Discovery centers, planetariums, afterschool centers, and museums are excellent resources for community-based STEM education in the context of the real world. According to NSSME+ (Banilower et al., 2018), about 28% of elementary classes and 49% of high school classes have based their science instruction on lessons and units collected from sources such as museum partners, conferences, or journals, etc., rather than on traditional textbooks. Commercial textbooks published by the Museum of Science, Boston, are used in 4% of elementary classes. The survey also shows that only about 3% of elementary school students in self-contained classes have received science instruction from “someone outside the school,” such as a staff person from a local museum, though 68% of elementary schools and 78% of high schools encourage students to attend summer camps organized by science centers or museums.

In order to tap into informal educational institutions in communities across the land, appropriate education for teachers in preparation is necessary. Incorporating informal educational community resources in  teaching helps to improve teachers’ content and pedagogical knowledge, besides improving the STEM knowledge and understanding of the students they teach (Kumar & Hansen, 2018; Brown, 2017; Jung & Tonso, 2006). Completing this task successfully adds to the “successful experience” of the student and “sets the stage for continued success” and raises self-efficacy (Bandura, 1986, noted in Versland, 2016, p. 300). Perceived self-efficacy refers to beliefs in one’s capabilities to organize and execute the course of action required to produce given attainments. This is in line with construct three of Carlone and Johnson (2007): successful teacher leaders have belief in their own capacity as a teacher leader with strong STEM content knowledge Mastery of the content taught by teachers and confidence in the pedagogical skills they implement in teaching are critical to sustain teacher leadership qualities. A teacher leader in STEM will not shy away from taking advantage of any reasonable resource within reach to facilitate meaningful learning experiences for his/her students.

Leadership Through Community Engagement

Community engagement activities are an integral part of teaching and learning in STEM disciplines in the College of Education at FAU. Activities have included student volunteers engaging in STEM outreach to local K–12 classrooms and participating in service-learning community activities through informal science education institutions such as science museums, observatories, and planetariums as part of the undergraduate science education course. For example, an opportunity for teacher leadership development for student volunteers through community engagement is available through a local science museum. This is a unique opportunity for improving the pedagogical and science content knowledge of university students in the elementary/middle school science methods course. Preservice teachers need adequate knowledge of and access to reliable community resources in STEM disciplines, which they can tap into in order to develop teaching strategies to connect classroom STEM topics to the world around ( Jung & Tonso, 2006). Presenting classroom STEM in the context of applications of STEM in the real world is a pedagogically effective way to augment and enrich students’ learning experiences, and it can be achieved by connecting to local institutions such as museums, planetariums, and industries, and by implementing carefully prepared instructional resources (e.g., multimedia anchors) (Kumar, 2010).

Students who are interested in the community engagement volunteering opportunity express their interest to the course instructor and the designated museum staff. In working with the museum staff the student volunteer sets up an initial appointment to visit the museum and receives a free entry pass and a guided tour of the exhibits at the museum. The tour guide discusses with the student volunteer the STEM-related themes and principles of the exhibits. Depending on their interest and comfort level, each student volunteer selects one exhibit for the community engagement activity. The student volunteer then informs the course instructor and the museum staff of the exhibit chosen and proceeds to develop a detailed lesson plan incorporating pedagogically appropriate hands-on activities in alignment with the Next Generation Sunshine State Standards. Topics related to museum exhibits chosen by student volunteers have included airplane wings (e.g., Bernoulli’s Principle), weather, clouds, the water cycle, coral and coral bleaching, sharks, mangroves, the Everglades, etc. Twenty students have volunteered for this project since its inception.

The student volunteer has flexibility in the development of the lesson plan. Once the lesson plan is developed, the course instructor and the museum staff provide feedback. Every effort to improve the quality of the STEM content and pedagogical knowledge is made during this feedback process, with particular attention to misconceptions, correctness of content, cognitive levels of questions, connections to STEM in the real world, and the integration of suitable engaging hands-on activities. After finalizing the lesson plan, the student volunteer works with the museum staff to decide on a mutually convenient time and date to present the lesson in a group setting. Depending on the season, day and time, the group may be K–12 student visitors, tourists, parents, and/or senior citizens. Sometimes selected museum staff members are the audience that provides an opportunity for the student leader to answer questions that help build a deeper knowledge of the subject.

Once the lesson plan is implemented, the student volunteer receives feedback provided by the museum staff. The museum staff shares the feedback with the course instructor along with a summary of key aspects of the lesson presentation. In addition, each participating student volunteer is required to reflect upon their community engagement experience in terms of the following five prompts: (1) Describe any effect of the project on your level of understanding of the Science Concept/Principle you addressed. (2) Describe any effect on your level of confidence in explaining the Science Concept/Principle you addressed. (3) Describe any effect on your ability to relate science to real-world examples. (4) Describe any effect on your ability to teach science. (5) Describe any effect on your decision to utilize community resources such as museums in your future K–12 teaching.

Benefits to the Student Volunteer

At the end of the community engagement activity, the participating student volunteer receives credit in the form of bonus points toward course grade and FAU Academic Service Learning (ASL) credit. Since Fall 2017, students who participate in this community engagement project receive Academic Service Learning credit for approximately 10 hours spent on the project, with the corresponding ASL notation posted to their transcripts. Prior to the implementation of the FAU ASL credits system, participating students received volunteer hours in the FAU-designated Noble Hour. It should be noted that this community engagement by student volunteers supports the “Community Engagement and Economic Development” platform in the “Strategic Plan for the Race to Excellence 2015-2025” of FAU. Since Spring 2019, besides students in “Principles and Methods: K–9 School Science,” students in “Science: Elementary and Middle School” and “Science Content: K–6 Teachers” courses are also eligible to participate in this community engage- ment teacher leadership development project and receive FAU ASL credit. A higher level of confidence, a level of understanding of content and pedagogy, and an ability to incorporate community resources in teaching are all essential to building teacher leadership qualities. As student volunteers build leadership skills through community engagement activities, they help the museum visitors see the exhibits through the eyes of the STEM lessons they present, providing the visitors a different dimension of enrichment and exposure to the exhibits not available elsewhere.

Method

For this preliminary study, data were collected from a reflective survey response completed by students who participated in the museum experience. The reflective survey was developed by Kumar (2017) to allow students to self-reflect on their experiences and provide insights for the research around the impact of the experience on the student’s confidence and mastery of the subject. Since the development of the survey 12 students have participated in the project and received the survey, and seven students responded.

Analysis and Results

Each researcher reviewed survey responses individually to identify emerging themes. Researchers then reviewed and analyzed responses together. All responses from the students were coded collectively. Four major themes emerged.

  • Self-Confidence Development
  • Depth of Understanding of the Topic
  • Audience STEM Learning
  • Sense of Self-Responsibility

Table 1 summarizes the total responses by themes. In some themes the total number of responses exceeds the number of respondents. An analysis of each theme with specific quotes from respondents follows.

Self-Confidence Development

How did the self-confidence of the individual change during this activity? This theme emerged as the strongest one. Seven of the seven respondents shared 15 responses that support the development of self-confidence.

“This experience allows me to be more confident when teaching.”

“Presentation and demonstration allowed me to build confidence in explaining [the lesson].”

Audience STEM Learning

How well did the audience learn the science concept taught by the student? Three of the seven respondents shared seven responses that positively represented this theme.

“Because of the level of confidence, I had in my project, this caused audience to gain more knowledge about…”

Depth of Understanding of the Topic

How did this experience impact the depth of understanding of the selected topic? Six of the seven respondents shared 14 responses that positively represented this theme.

“Everything I learned [about my topic] will stick with me forever.”

“I have learned a lot about the different components of [the topic].”

Sense of Self-Responsibility

Did this activity include a sense of responsibility on the part of the student? Two of the seven respondents shared four responses that positively supported this theme.

“It is important to me that students understand the effects humans have on the Everglades.”

Discussion and Implications

Teacher leadership development through community engagement is a volunteer project for undergraduate students at FAU. Based on the preliminary data analysis, there are several benefits to students. First, the community engagement activity helps to build a sense of efficacy and self-confidence, which is noted as a valuable part of teacher leadership (Bandura, 1997; Versland, 2016). Furthermore, as noted by Hunzicker (2017), “internal factors such as motivation and confidence are likely to influence the progression from teacher to teacher leader more so than external factors” (p.1). Second, it provides a platform for experiential learning by leveraging community resources such as planetariums and museums to develop engaging STEM lessons that students identified as a deepening of their subject knowledge as aspiring leaders. Helping teachers develop content knowledge skills in their pre-teaching experiences is important, as these early career teachers may be more likely to advocate for instructional and curricular changes (Raue & Gray, 2015). Students who participate in experiential programs such as this have the opportunity to enter the beginning years of teaching with the ability to lead other teachers as the masters of the curriculum; they have built a sense of self-efficacy through repeated successes, which allows them to perform as confident teacher leaders (Huggins, Lesseig, & Rhodes, 2017; Bandura, 1997; Hunzicker, 2017). Third, it offers considerable pedagogical advantages, providing a unique opportunity to build confidence in teaching STEM lessons to audiences ranging from school children to senior citizens visiting the museum. These benefits are supported by the findings of Hunzicker (2012). Three factors were identified as those that develop teacher leadership: “exposure to research-based practices, increased teacher self-efficacy, and serving beyond the classroom” (p. 267).

Since 2013, 20 students have volunteered in teacher leadership development through community engagement in a museum. However, student self-reflections were not implemented until 2017. Since 2017, 7 out of 12 students have volunteered to submit self-reflections. A longitudinal study of those student volunteers who are now teaching in K–12 classrooms is needed to determine the effect of the community engagement experience on student learning and to understand the nature of teacher leadership development. Augmentation of the 5-item self-reflection questionnaire with additional specific teacher leadership questions is also underway. Based on the outcomes of future research and evaluations, creative ways to improve community engagement opportunities for teachers should be explored in order to contribute toward building teacher leaders who are champions of reforming STEM education in our classrooms.

It should be noted that this is a volunteer activity and that for various reasons, not many students signed up. Most of the students who attend classes on the FAU Broward campus are commuters or are employed full-time or part-time and have family obligations. A few times students who signed up and made the initial museum visit later changed their minds because of conflict of schedule with employment and/or family situations. Some students who struggled with the course have avoided the volunteer activity, while others in similar situations have taken advantage of the opportunity to improve their content and pedagogical knowledge in addition to improving their final grade.

Considering the benefits for student volunteers, opportunities for teacher leadership development through community engagement in partnership with local informal STEM education resources should be further developed. In most cities of the United States, informal science education resources such as museums, discovery centers, and planetariums that are suitable for establishing teacher leadership development opportunities through community engagement in STEM are available for teachers in training. Even in rural areas, building partnerships with farms, forestry businesses, aquaculture, and healthcare for STEM education are possible (Buffington, 2017). Universities and colleges with teacher preparation programs have a responsibility to explore and initiate collaborations with local informal education institutions. By establishing community engagement opportunities aimed at teacher leadership development, they can contribute to efforts to reform school science, technology, engineering, and mathematics education.

Authors

David Devraj Kumar is Professor of Science Education and Director of the STEM Education Laboratory in the College of Education at Florida Atlantic University. His research and scholarly activities focus on digital media enhanced STEM teaching and learning contexts, problem-based learning, science literacy, STEM leadership, education policy, and evaluation. He is a former Visiting Fellow in Governance Studies at the Brookings Institution. He is a recipient of the Sir Ron Nyholm Education Prize from the Royal Society of Chemistry, an elected Fellow of the American Association for the Advancement of Science, and a SENCER Leadership Fellow of the N tional Center for Science and Civic Engagement.

Sharon Moffitt

Sharon R. Moffitt is a clinical instructor in educational leadership and research methodology in the College of Education at Florida Atlantic University. Her research and work focus on teacher, school, and district leadership coaching. She is the coordinator of a partnership between a large school district and Florida Atlantic University, which is focused on developing aspiring administrators through a rigorous Master’s Degree Program. She has 35 years of school and district leadership experience in the public school system.

References

Bandura, A. (1986). Social foundation of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice Hall.

Bandura, A. (1997). Self-efficacy: The exercise of control. New York, NY: Freeman.

Banilower, E. R., Smith, P. S., Malzahn, K. A., Plumley, C. L., Gordon, E. M., & Hayes, M. L. (2018). Report of the 2018 NSSME+. Chapel Hill, NC: Horizon Research, Inc.

Bond, N. (2011). Preparing preservice teachers to become teacher leaders. The Educational Forum, 75(4), 280–297.

Brown, K. (2017). Pre-service teachers’ acquisition of content knowledge, pedagogical skills, and professional dispositions through service learning. Science Education & Civic Engagement, 9(2), 13–26.

Buchanan, J. (2010). May I be excused? Why teachers leave the profession. Asia Pacific Journal of Education, 30(2), 199–211.

Buffington, P. (2017). Closing STEM education opportunity gaps for rural students. Waltham, MA: Education Development Center, Inc.

Carlone, H. B., & Johnson, A. (2007). Understanding the science experiences of successful women of color: Science identity as an analytic lens. Journal of Research in Science Teaching, 44(8), 1187–1218.

Center for Strengthening the Teaching Profession. (2018). Teacher leadership skills framework. Olympia, WA: CSTP.

Committee on STEM Education of the National Science and Technology Council. (2018). Charting a course for success: America’s strategy for STEM education. Washington, DC:  Executive Office of the President, Office of Science and Technology Policy.

Danielson, C. (2006). Teacher leadership that strengthens professional practice. Alexandria,VA: Association for School Curriculum and Development.

Hattie, J., & Timperely, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81–112.

Huggins, K. S., Lesseig, K., & Rhodes, H. (2017). Rethinking teacher leader development: A study of early career mathematics teachers. International Journal of Teacher Leadership, 8(2), 28–48.

Hunzicker, J. (2012). Professional development and job-embedded collaboration: How teachers learn to exercise leadership. Professional Development in Education, 38(2), 267–289.

Hunzicker, J. (2017). From teacher to teacher leader: A conceptual model. International Journal of Teacher Leadership, 8(2), 1–27.

Jung, M. L., & Tonso, K. L. (2006). Elementary preservice teachers learning to teach science in science museums and nature centers: A novel program’s impact on science knowledge, science pedagogy, and confidence in teaching. Journal of Elementary Science Education, 18(1), 15–31.

Kumar, D. D. (2010). Approaches to interactive video anchors in problem-based science learning. Journal of Science Education and Technology, 19(1), 13–19.

Kumar, D. D. (2017). Capacity building in STEM education. STEM Education Laboratory Informational Meeting, Florida Atlantic University, Davie, FL.

Kumar, D. D. (2019). Road to American STEM education reform: Review of selected NSSME results. A paper presented at the Critical Questions in Education Symposium organized by The Academy for Educational Studies, Chicago, IL.

Kumar, D. D., & Hansen, M. (2018). Climate confusion: Content and strategies, not controversy, are the biggest challenges for science teachers. (Brown Center Chalk Board, October 30, 2018). Washington, DC: The Brookings Institution.

Kumar, D. D., & Scuderi, P. (2000). Opportunities for teachers as policymakers. Kappa Delta Pi Record, 36(2), 61–64.

Office of Science and Technology Policy. (2018). President Donald Trump is working to ensure all Americans have access to STEM education. Washington, DC: Executive Office of the President. Retrieved from https://www.whitehouse.gov/briefings-statements/president-donald-j-trump-is-working-to-ensure-all-americans-have-access-to-stem-education/.

Raue, K., & Gray, L. (2015). Career paths of beginning public school teachers. Washington, DC: Institute of Educational Sciences, National Center for Educational Statistics. Retrieved from https://nces.ed.gov/pubs2015/2015196.pdf.

Stronge, J. H., & Hindman, J. L. (2003). Hiring the best teachers. Educational Leadership, 60(8), 48–52.

Teacher Leadership Exploratory Consortium. (2011). Teacher leader model standards. N.p.: Teacher Leadership Exploratory Consortium.

Versland, T. M. (2016). Exploring self-efficacy in education leadership programs: What makes the difference? Journal of Research on Leadership Education, 11(3), 298–320.

Wenner, J., & Campbell, T. (2018). Thick and thin: Variations in teacher leader identity. International Journal of Teacher Leadership, 9(2), 5–21.

Download the article

Download (PDF, 535KB)

 

Starting with SENCER: A First-year Experience Framed by the Science and Civic Issues of the Chesapeake Bay

Abstract

In 2017, Longwood University launched the LIFE STEM Program, a holistic program girded by best practices in STEM teaching: cohorts of students, summer bridge program, genuine community building, intentional faculty-student mentoring, focused academic support and professional development, early research experiences, engagement with challenging civic issues, and, importantly, financial support for students. The first-year experience is critical in establishing the academic expectations of the LIFE STEM Scholars, supporting their development as a community of learners, and engaging them in real work of scientists. That yearlong journey opens with a one-week summer bridge program on the Chesapeake Bay. While on the Bay, the Scholars begin to frame scientific questions tied to key civic issues and grapple with intersections of science, economics, and politics. In a two-semester Entering Research course sequence, Scholars expand on key questions, process field-derived samples, analyze data, and consider the meaning of their work in this complex and contested civic context.

Introduction

The LIFE STEM Program (Longwood Initiative for Future Excellence in STEM) was created to provide wrap-around support for academically talented science students with financial need. With funding from the National Science Foundation’s Scholarships in STEM (S-STEM) program (Award #1564879), the LIFE STEM Program is supporting, through curricular, co-curricular, and financial elements, the four-year college experience of two cohorts of 12–14 students representing  Longwood’s four natural science majors (Biology, Chemistry, Integrated Environmental Sciences, and Physics).  

In the 2017–2018 and 2018–2019 academic years, the first two multidisciplinary cohorts of LIFE STEM Scholars completed the first-year experience, which serves as the foundation on which the rest of the LIFE STEM Program builds. Recognizing the important challenges of the transition to college (PCAST, 2012), the program immediately connects the incoming Scholars with peer and faculty mentors and invests heavily in intentional community building. The fall course schedule of the Scholars includes cohort sections of the introductory chemistry course (CHEM 111), a first-year seminar focused on the transition to university work (ISCI 100), and a second seminar focused on research (ISCI 120; Table 1).  

Table 1: Overview of the LIFE STEM Program.

The context for the Scholars’ first-year research activities—almost from the minute they arrive on campus—is the Chesapeake Bay, the largest of over 100 estuaries in the United States (US) and the third largest in the world. Throughout the written history of the US, the Bay has provided vital resources (e.g., blue crabs [Callinectes sapidus], oysters [Crassostrea virginica], and menhaden [Brevoortia tyrannus]) and has fueled robust local and regional economies. In fact, still today, the small town of Reedville ranks first in the contiguous US for fish landings (by weight of catch; NMFS, 2017). A focus of intensive conservation efforts since the 1970s, the Bay’s key health indicators have improved, but overall it continues to earn a barely passing grade of D+ (CBF, 2018). With a watershed encompassing more than 64,000 square miles, the Bay is affected by land management practices extending from northern New York to southern Virginia. Furthermore, the watershed is home to more than 18 million people who have direct and indirect impacts on the Bay and the complex natural systems within it (CBF, 2018; CBP, 2019).

Clearly, this body of water presents almost endless potential for scientific research at all levels. Indeed, scholars in higher education and government service have invested careers in studying these natural systems. With its incredible jurisdictional complexity—six states and the District of Columbia and nearly 1,800 local jurisdictions (i.e., towns, cities, counties, and townships; CBP, 2017)—the Bay offers another level of scholarly engagement at the intersections of science and civic issues. For the LIFE STEM Scholars, the Bay is a study site in which they collect a variety of scientific data, but they also experience it as a home to the human communities that depend on it. Furthermore, many of our Scholars have a personal connection to the Bay, as it is an area where they and their families live. It is a contested space in many ways, and it has been for generations. Thus, the LIFE STEM Scholars do not start the college experience with prepared lab exercises at the bench, activities with known outcomes. Instead, they begin with an immersion in a complex civic issue, one where scientific study can offer new insights but for which science alone cannot offer solutions.

This focus on the Chesapeake Bay for the first-year experience grew from Longwood University’s long-running engagement with the SENCER program (Science Education for New Civic Engagements and Responsibilities). The SENCER approach to teaching and learning (SENCER Ideals)

•  robustly connects science and civic engagement “through” complex, contested, capacious, current, and unresolved public issues “to” basic science;

•  invites students to put scientific knowledge and the scientific method to immediate use on matters of immediate interest to students;

•  helps reveal the limits of science by identifying the elements of public issues where science does not offer a clear resolution;

•  shows the power of science by identifying the dimensions of a public issue that can be better understood with certain mathematical and scientific ways of knowing;

•  conceives the intellectual project as practical and engaged from the start;

•  locates the responsibilities (the burdens and the pleasures) of discovery as the work of the student;

•  and, by focusing on contested issues, encourages student engagement with “multidisciplinary trouble” and with civic questions that require attention now. (SENCER, 2017)

The LIFE STEM Scholars’ yearlong exploration of the challenging issues of the Chesapeake Bay was designed to intentionally operationalize the SENCER Ideals in each of the cornerstones of the first-year experience.

Cornerstones of the First-year Experience

Immersion Experience on the Chesapeake Bay

In the two weeks prior to the start of the fall semester, the LIFE STEM Scholars participated in a summer bridge program. The first week of that program was an immersion experience at the Chesapeake Bay for which Longwood University’s 662-acre field station, Hull Springs Farm (HSF), situated on tributaries to the Potomac River and just a short distance from the Bay proper, served as the center of operations.

One important goal of the HSF week was to set the stage for a guided interdisciplinary research project in the Scholars’ first year. That project intentionally incorporated the SENCER Ideals and, in so doing, expanded on Longwood’s previous SENCER projects focused on non-science majors and the general education curriculum. Using the place-as-text approach to learning (Braid and Long, 2000), Scholars explored issues that link scientific and civic discourses, such as water quality (e.g., stormwater runoff, eutrophication, dead zones) and resource use (e.g., oysters, blue crab, menhaden). During their explorations on Tangier Island, Scholars engaged with members of the local community in order to begin to understand the complex intersections of civic and scientific issues (e.g., sea-level rise) and to connect them to the individuals who must live with them. As a culmination to the week, a scientist from the Chesapeake Bay Foundation presented data on the state of the Bay, supporting Scholars’ development of their final projects and their team presentations, which focused on civic and science engagement (Table 2). 

Honors Leadership Retreat

The second week of the summer bridge integrated the Scholars with the Cormier Honors College (CHC) students for the annual Honors Leadership Retreat, an on-campus “mini-bridge” program. The CHC has facilitated this retreat and its embedded peer mentoring for more than a decade and has had great success in building a cohesive community. During the Honors Leadership Retreat, Scholars participated in activities to promote leadership skills, community building, an academic mindset, and identification with a group of students for whom intellectual challenge and curiosity are shared values. Each LIFE STEM Scholar was paired with an experienced honors science major (for the first cohort of Scholars) or a current LIFE STEM Scholar (for the second cohort of Scholars), who served as a peer mentor. The retreat provided Scholars with opportunities for personal growth and connection to a larger cohort of academically talented students with whom they lived in the honors residence hall.

Coursework

In order to promote a strong cohort of Scholars, a sense of community, a scientific mindset, and the successful transition to college, the LIFE STEM curriculum has a deliberate focus on the first semester during which all Scholars are required to take three courses together (see Table 1). Two of those courses (CHEM 111 and ISCI 120) have explicit scientific connections to the bridge experience, including the analysis of water and sediment samples and associated environmental data, while the other course (ISCI 100) focuses on the transition to college. In addition to those common courses, Scholars also complete introductory courses in the major. During the second semester, Scholars focus primarily on their major course requirements but continue in ISCI 121, the second half of the two-semester course focused on promoting a scientific mindset and developing scientific skills. These courses are taught by members of the LIFE STEM Leadership Team, all of whom attended at least one HSF summer bridge. Thus, a strong sense of scientific community was initiated during the summer bridge and continued throughout the Scholars’ first year. 

Fundamentals of Chemistry I (CHEM 111)

Fundamentals of Chemistry I (CHEM 111) is a required course for science majors and a common stumbling block for first-year students. This course is taught using an inquiry-based model and utilized the POGIL (Process-Oriented Guided Inquiry Learning) pedagogy (Hein, 2012; De Gale & Boisselle, 2015) in both lecture and laboratory components. The collaborative POGIL environment is intended to help students learn, understand, and remember more while practicing skills essential for future success in the classroom, laboratory, and beyond. Connections to the summer bridge program were incorporated into the classroom component of the course as appropriate (e.g., polyatomic ions, molecular bonding, intermolecular forces, solubility, etc.). During the last five weeks of the laboratory portion of the course, the Scholars in the first cohort participated in “The Nitrate Analysis Project.” The Scholars used a spectrophotometric method to determine nitrate concentrations in a series of simulated Chesapeake Bay water samples. The second cohort participated in a final laboratory project focused on harmful algal blooms. In this project, the Scholars grew cultures under differing conditions to determine the effect of nutrient levels on algal growth.​ Algal growth was determined using a fluorescence technique to measure the chlorophyll content.

LIFE STEM Seminar I (ISCI 100)

Scholars completed a one-credit freshman seminar course that blended an introduction to academics with the transition to college life. Scholars were expected to demonstrate critical thinking skills necessary for college success, learn the importance of a digital professional presence, begin the development of a four-year e-portfolio project, design a graduation plan, demonstrate an understanding of academic resources on campus, explore career opportunities through events on campus and guest speakers, and engage in activities with the college and local community. 

Entering Research I (ISCI 120) and II (ISCI 121)

The first half of the Entering Research course sequence, adapted from Balster, Pfund, Rediske, and Branchaw (2010), engages LIFE STEM Scholars in an authentic, albeit guided, research experience and supports their development of basic skills necessary for a successful research experience. The Chesapeake Bay serves as the research focus. It is a context broad enough to support a wide range of learning activities: field, bench, and modeling work by students in all four majors; literature searches and critical reading of relevant scientific articles; explorations of connections between science and society; and consideration of research ethics. Drawing on data collected during the summer bridge, Scholars developed research questions and hypotheses in multidisciplinary student teams. This experience culminated with project presentations that outlined all aspects of the project, from definition of the problem, formulation of the hypothesis, design of the experiment, collection and analysis of the data, and drawing of the conclusions (Table 3). Several experiences within this course added to the breadth of content that continues to define the Scholars’ e-portfolios.

Table 3: The Entering Research Sequence: Student Outcomes for Key Skills, Weekly Course Topics that Support Development in Those Areas ,an Student Research Products.

Entering Research II reinforces and expands upon the knowledge and skills practiced in Entering Research I. Scholars continue to hone their skills in reading and comprehending primary literature by making a formal oral presentation of the background and findings of a scientific paper in their field of choice, thus allowing flexibility of interest in this multidisciplinary group.  In addition, continuing the focus on the Chesapeake Bay, Scholars design formal proposals for research—from posing a question through final presentation—in a multidisciplinary team. This process challenges Scholars to practice experimental questioning and implementation, expand their thinking to consider the larger scope of a research proposal, and establish a strong argument to convince an audience of the significance of a project (Table 3).  

Mentoring

Each LIFE STEM Scholar was paired with a faculty mentor prior to the Scholar’s arrival on campus. This mentoring relationship, which is intended to grow and mature over four years, is a core component of the LIFE STEM experience. Mentoring is intensive in the first two years with weekly and biweekly meetings; regular but less frequent meetings continue during the third and fourth years as the Scholars develop more independence. Fourteen faculty members from the two science departments mentored at least one Scholar, with most mentoring two Scholars, one from each cohort. To prepare for this individualized work with Scholars, mentors participated in a workshop provided by Dr. Janet Branchaw of the University of Wisconsin’s Institute for Biology Education. In addition to faculty mentors, Scholars also benefited from student peer mentors either from the CHC (cohort 1) or a current LIFE STEM Scholar (cohort 2). Although the structure was informal, peer mentors were often able to better understand and assist with the struggles associated with college life.

Student Voices: Reflections on the First-year Experience

Four LIFE STEM Scholars provided reflections on their experiences in the program: Samuel Morgan and Charlotte Pfamatter, Class of 2021 Integrated Environmental Sciences majors; Kelsey Thornton, Class of 2021 Biology major; and Cecily Hayek, Class of 2022 Biology major. These Scholars’ voluntary narratives (for which no specific directions were given) articulated insights on their learning in the affective domain. Drawing on a framework outlined by Trujillo and Tanner (2014), we tie their reflections to three key constructs related to the successful transition to the college environment and subsequent academic success: a sense of belonging in an academic community; identity as a professional and, more specifically, a scientist; and self-efficacy. Importantly, the development of their understanding of the connections between science and civic issues also was highlighted.

Sense of belonging

Students’ sense of belonging affects academic motivation, academic achievement, and well-being (Trujillo & Tanner, 2014), and first-year college students who experience more peer support performed better academically and had lower levels of stress, depression, and anxiety (Pittman & Richmond, 2008). LIFE STEM Scholars highlighted their early, meaningful, and persistent connections.

“The immediate connections and opportunities we were afforded upon arrival to Longwood have had a lasting impression on my time here, thus far. I was able to develop friendships before other college students, which made the transition less intimidating.”   (Kelsey)

“I cannot think of too many better ways that I could have started off college than going on my freshman summer bridge program. Meeting so many bright students and adults who shared my interest for science was an unexpected delight. What has been even more remarkable has been how I have kept my friendships and connections for almost two years and they have only gotten stronger. I have teamed up with many of my LIFE STEM friends for presentations, posters, and conferences, and each time, I know that I am able to rely on my cohort for sterling work and helpful insight.”

“While my duty is to my assigned mentee, I see both cohorts as one community where we are all trying to help each other get through college and make it out with a brighter future. Besides partnering with them on projects, I have enjoyed many one-on-one conversations on making it through college. I have gotten to bond over dinners and lunches, and I have benefitted from a few late-night study groups. I see this community best exemplified when many of us go back each semester to Hull Springs to beautify the area through gardening. We get to spend a weekend doing some service while also bonding. We get to self-lead and organize ourselves while giving back to the university that granted us this excellent program in the first place.” (Samuel)

“My LIFE STEM peer mentor has been so kind and supportive this year that I decided to apply to be a peer mentor for the next cohort. I know that these relationships that I have formed over this past year will continue to grow, and I am so thankful that I have been able to create such a great support system.”  (Cecily)

The development of sense of belonging is not limited to peer interactions: connections to faculty members also are important in promoting students’ sense of belonging in the university context (Freeman, Anderman, and Jensen, 2007).  

“I believe that the faculty-student connections we made upon arrival, and continue to make to this day, are the best reward of this program. Being able to go to any science faculty member and ask them about anything, whether it be in regard to academics or just life, they already know you and they are there and willing to help.”  (Kelsey)

“The LIFE STEM faculty have been able to make Chichester (our science building) feel like home. I have gone to so many faculty STEM mentors for guidance on school projects, and I will always be thankful for the many opportunities they have afforded me.”  (Samuel)

“Other than academic success, this program has also given me many great mentors who have been integral in helping me plan out my future. My faculty mentor is always there to give me advice on anything I ask about and is even assisting me in contacting people in my desired field.”  (Cecily)

Identity as a scientist

A student’s identification as a scientist is linked to persistence, and students who left the sciences often did not adopt that professional identity (Trujillo & Tanner, 2014). Science identity can be framed as a composite of multiple factors, including performance, recognition, and competence (Carlone & Johnson, 2007). Those dimensions are evident in the following statements by LIFE STEM Scholars:

“I have become a strong leader and a confident biologist in the making. I am excited to move forward in this program, meet and connect with future cohorts, and continue growing as a student and as a Citizen Leader.”  (Kelsey)

“One of my proudest titles at Longwood is being a LIFE STEM Scholar. . . . LIFE STEM has been pivotal for me not only as a student but as a young professional. . . . Also, LIFE STEM has brought me confidence as an aspiring scientist. Coming to college, I had limited experience in science and had only brief exposure to it in high school. I was not knowledgeable on scientific writing and presentations. The LIFE STEM courses have groomed me to become a professional in the STEM world through step-by-step writing and presenting exercises, while providing many opportunities for practice. This program has equipped me with the tools I need to be a competitive student in my major, which will help me thrive in a STEM career and graduate school after Longwood.” (Charlotte)

“I hope to continue to grow as a student and forge even more connections that will allow me to further my education as a biologist.” (Cecily)

Self-efficacy

A student’s self-efficacy is the belief or confidence that his/her/zir actions can affect outcomes and have desired effects (Bandura, 1997). It is an ingredient that can move students beyond the “raw materials” of knowledge and skills to academic success (Klassen & Klassen, 2018). LIFE STEM Scholars’ reflections indicate that the program’s scaffolded academic experiences and early research immersion supported students’ confidence in moving forward positively to more advanced work.

“This program helped me to grow in many aspects, both professionally and personally. In my first year, I learned how to do scientific research and had the opportunity to improve my public speaking skills. The second year was predominately learning how to be a scientist; that is, how to read articles, how to synthesize, and how to report to different audiences. These were all skills that were challenging at the time; however, I was grateful to have learned them in the LIFE STEM Program classes. Once the cohort started taking classes outside of the program, I was personally able to see how far ahead we were compared to other students in regard to simple skills such as writing and public speaking.”  (Kelsey)

“As a mentor to the second cohort of LIFE STEM students, I have been able to grow in my leadership skills. In my first year, I was provided with lots of help, advice, and opportunities, but, as a mentor in my second year, I got to provide those things to my mentees.” (Samuel)

“LIFE STEM has helped me gain momentum in pursuing undergraduate research. This academic program is designed for students to learn about undergraduate research, with the hope of actually taking on a research opportunity. The courses have exposed me to examples of some of the faculty’s work, while also being able to meet face to face with professors to learn what research entails. Because of LIFE STEM, I was able to take on research in my sophomore year and the summer before my junior year. LIFE STEM prepared me with professional communication skills, which landed me an opportunity to do research for the duration of my time at Longwood.”  (Charlotte)

“Coursework as a Biology major can be challenging, and I was pleased when I found myself performing much better on assignments and assessments than other students that are not in the program. This success is because of the skills and knowledge that LIFE STEM Scholars are exposed to within the first semester. I have been able to improve my writing immensely and even broaden my skills in researching and reading scientific articles. I believe that this program has opened doors for me within the scientific field as well as my other courses.” (Cecily)

Connections between Science and Civic Issues

The LIFE STEM Scholars begin their university careers immersed in a complex and contested civic issue that at first is framed as a scientific problem. Their “engagement with ‘multidisciplinary trouble’ and civic questions that require attention now” (SENCER, 2017) has prompted students to reevaluate their perceptions of their identities and their responsibilities as citizens and scholars.

“As I spent time on the Chesapeake Bay, I realized that an environmental scientist’s purpose cannot be to merely understand the relationship between a community of organisms and the landscape they inhabit, or to work to preserve beneficial ecosystems. Instead, an environmental scientist’s job is to lend their knowledge and skills to a cooperative effort of maintaining and improving a society’s relationship with the natural world. The Bay is much more than a tidal estuary for crabs, oysters, pelicans, and shad. The Bay has historical, economic, and recreational significance, and serves as a home to millions of people. Sometimes natural preservation conflicts with keeping these other values. An environmental scientist’s purpose must involve attempting to preserve all of society’s values.”  (Samuel)

Conclusion

Although it is still in the early stages of the evaluation process, initial assessment by Virginia Commonwealth University’s Metropolitan Educational Research Consortium (MERC) suggested that the LIFE STEM Program has been successful in achieving its objectives. From first to second semester, LIFE STEM Scholars were retained at a higher rate than their peers in the science majors (Table 4). Additionally, Scholars reported feeling academically supported through the program and expressed gratitude for the opportunity to connect with a cohort of science peers and faculty through the summer bridge, mentoring program, and LIFE STEM coursework (MERC unpublished data). Scholars from the first cohort also informally reported to the LIFE STEM Leadership Team that as they transitioned to upper-level courses, they perceived themselves to be better prepared for scientific writing and oral presentations than their peers. They attributed that to the Entering Research course sequence. Longwood University also recognized the successes of the program by providing institutional funding to enroll a third cohort of LIFE STEM Scholars, which extends the positive impacts of the program to continue beyond the timeline initiated in the NSF S-STEM award. 

Though the program is off to a strong start, it is not immune to both program- and institutional-level challenges such as faculty workload and sustainability. To address that, some members of the LIFE STEM Leadership Team applied and were accepted to the 2019 ASCN (Accelerating Systemic Change Network) Systemic Change Institute. The team’s major goals for the institute were to develop a realistic plan for engaging faculty from the science departments in discussions about lessons learned and opportunities for implementation beyond LIFE STEM, learn about proven strategies for engaging faculty in scaling up nascent efforts, identify strategies for engaging faculty and staff in recruiting efforts, and consider program elements that might support different funding opportunities, including the Howard Hughes Medical Institute’s Inclusive Excellence program. 

As the LIFE STEM Leadership Team and MERC continue to learn about the program’s successes, identify areas for improvement and growth, and pursue opportunities for scaling beyond the small cohorts, the Scholars’ first-year immersion at the intersection of science and civic issues continues to serve as a foundation for the Scholars’ academic and co-curricular efforts. The SENCER Ideals are infused into the upper-level LIFE STEM coursework, and Scholars are pursuing leadership roles on campus that again position them at that intersection (e.g., Eco-Reps in the university’s Office of Sustainability).

Table 4: Retention Rates of Longwood University Undergraduates (UG) for the Two Classes in Which the LIFE STEM Cohorts are Embedded.
Authors
Michelle Parry

Michelle Parry is associate professor of physics in the Department of Chemistry and Physics (C&P). She serves as the LIFE STEM Program coordinator and teaches the LIFE STEM Seminar I course that focuses on the successful transition to college. She also serves as the physics area coordinator and is responsible for program assessment and for leading curriculum change. 

Wayne Znosko

Wade Znosko is associate professor of biology in the Department of Biological and Environmental Sciences (BES). He leads the two-semester sequence of Entering Research for the LIFE STEM Program. His research on the effects of impaired waterways on the development of vertebrates helps to inform some of the data collection and analysis techniques during this sequence.

Alix Dowling Fink

Alix Dowling Fink is dean of the Cormier Honors College for Citizen Scholars and professor of biology in BES. She has been involved with SENCER for more than 15 years and, with Michelle, developed a SENCER Model Course, The Power of Water. Collaborating with colleagues across the disciplines, she also developed a transdisciplinary student program in Yellowstone National Park focused on the stewardship of our public lands. Her commitment to the SENCER Ideals continues to shape her work with students in the classroom, in the field, and through her administrative efforts.

Mark Fink

Mark Fink is the chair of BES and associate professor of biology. Since 2011, he has facilitated immersion learning experiences on the Chesapeake Bay, first with teacher candidates and in-service teachers and currently with students from all majors. In those programs and his life science course for future K–8 teachers, Mark has sought to engage students in learning science concepts by using relevant, timely, and challenging civic contexts.

Kenneth Fortino

Kenneth Fortino is an associate professor of biology in BES, where he teaches courses in introductory biology, ecology and evolution, ecosystem ecology, and introductory environmental science. His current research is on the factors that affect organic matter processing in freshwater ecosystems.

Melissa Rhoten

Melissa Rhoten is a professor of chemistry in C&P. Her research interests include topics in chemical education, bioanalytical electrochemistry, and biosensors. Melissa has been involved in pedagogical activities focused on the implementation of inquiry-based learning in Longwood’s chemistry curriculum. She currently serves as the director of Longwood’s new Civitae Core Curriculum.​

Sarai Blincoe

Sarai Blincoe is an associate professor in the Department of Psychology and is the discipline-based educational researcher for the LIFE STEM Program. She regularly teaches undergraduate courses in research methods and social psychology and publishes research on disrespect, trust, and the scholarship of teaching and learning. Sarai serves as assistant dean of curriculum and assessment in the Cook-Cole College of Arts and Sciences.

Student Contributors

Cecily Hayek

Cecily Hayek is a biology major who graduated from Lake Braddock Secondary School in Fairfax, VA, in May 2018. In June 2019, she attended the Mid-Atlantic Marine Debris Summit that sought to find solutions for marine litter and subsequent problems such as microplastics. Cecily plans to pursue a career in veterinary medicine.

Samuel Morgan

Samuel Morgan is an integrated environmental sciences major who started his studies at Longwood University in August 2017. Since then, he has been a LIFE STEM mentor as well as a student collaborator on faculty research focused on allelopathy.

 

Charlotte Pfamatter

Charlotte Pfamatter is an integrated environmental sciences major who graduated from Monacan High School in North Chesterfield, VA, in May 2017. In the summer of 2018, Charlotte participated in the School for Field Studies program in Turks and Caicos Islands that explored issues in marine conservation.

Kelsey Thornton

Kelsey Thornton is a biology major who graduated from Thomas Dale High School in Chester, VA, in May 2017. In the summer of 2019, she participated in the Longwood University study abroad experience examining conservation and economics in Ecuadorian Amazon. Kelsey’s professional goal is to become a veterinarian.

References

Balster, N., Pfund, C., Rediske, R., & Branchaw, J. (2010). Entering research: A course that creates community and structure for beginning undergraduate researchers in the STEM disciplines. CBE Life Sciences Education, 9(2), 108–118. Retrieved from http://www.lifescied.org/content/9/2/108.long 

Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman.

Braid, B., & Long, A. (2000). Place as text: Approaches to active learning. National Collegiate Honors Council. Retrieved from http://digitalcommons.unl.edu/nchcmono/3/ 

Carlone, H. B., & Johnson, A. (2007). Understanding the science experiences of women of color: Science identity as an analytical lens. Journal of Research in Science Teaching, 44(8), 1187–1218.

Chesapeake Bay Foundation (CBF). (2018). State of the Bay report.  Retrieved from https://www.cbf.org/document-library/cbf-reports/2018-state-of-the-bay-report.pdf 

Chesapeake Bay Program (CBP). (2017). Facts and figures. Retrieved from  https://www.chesapeakebay.net/discover/facts 

Chesapeake Bay Program (CBP). (2019). Bay barometer.  Retrieved from https://www.chesapeakebay.net/documents/2017-2018_Bay_Barometer.pdf 

De Gale, S., & Boisselle, L. (2015). The effect of POGIL on academic performance and academic confidence. Science Education International, 26(1), 56–79. 

Freeman, T. M., Anderman, L. H., & Jensen, J. M. (2007). Sense of belonging in college freshmen at the classroom and campus levels. Journal of Experimental Education, 75(3), 203–220.

Hein, S. M. (2012). Positive impacts using POGIL in organic chemistry. Journal of Chemical Education, 89(7), 860–864. 

Klassen, R. M., & Klassen, J. R. L. (2018). Self-efficacy beliefs of medical students: A critical review. Perspectives on Medical Education, 7(2), 76–82.

National Marine Fisheries Service (NMFS). (2017). Commercial fisheries statistics. Retrieved from  https://www.st.nmfs.noaa.gov/commercial-fisheries/commercial-landings/other-specialized-programs/total-commercial-fishery-landings-at-major-u-s-ports-summarized-by-year-and-ranked-by-dollar-value/index 

President’s Council of Advisors on Science and Technology (PCAST). (2012). Engage to excel: Producing one million additional graduates with degrees in science, technology, engineering, and mathematics. Retrieved from https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/pcast-engage-to-excel-final_2-25-12.pdf 

Pittman, L. D., & Richmond, A. (2008). University belonging, friendship quality, and psychological adjustment during the transition to college. Journal of Experimental Education, 76(4), 343–362.

Science Education for New Civic Engagements and Responsibilities (SENCER). (2017). SENCER Ideals.  Retrieved from http://sencer.net/sencer-ideals/ 

Trujillo, G., & Tanner, K. D. (2014). Considering the role of affect in learning: Monitoring students’ self-efficacy, sense of belonging, and science identity. CBE Life Sciences Education, 13, 6–15.  Retrieved from https://www.lifescied.org/doi/full/10.1187/cbe.13-12-0241 

Download the article

Download (PDF, 912KB)

Study of Healthcare-Associated Infections and Multi-Drug Resistance in Brooklyn: An Integrative Approach

Abstract

One SENCER ideal is to connect science education and civic engagement by student learning through complex, unresolved public issues. Using this approach, we established a collaborative interdisciplinary project involving faculty and undergraduate students at NYC College of Technology. Over several semesters, students conducted literature search and discovered the complex factors contributing to the occurrence and transmission of healthcare-associated infections (HAIs). Using microbiology data from 15 hospitals in Brooklyn, NY, they applied statistical analyses, studied the antibiotic resistance, and developed a campaign to bring more awareness of this problem. The results of the project highlight the importance of immediate action in combating HAIs and support the need for a public health campaign. Undergraduate students were provided with the opportunity to conduct research, perform scientific and mathematical analyses, and present their results. They gained better understanding of the complex interactions among microbiology, epidemiology, and mathematics that is needed to develop preventative measures and combat HAIs.

 Introduction

In April 2014, World Health Organization officials released a comprehensive report on antibiotic resistance, calling it a “major threat to public health” and seeking “improved collaboration around the world to track drug resistance, measure its health and economic impacts and design targeted solutions” (WHO, 2016). Using the SENCER ideals of connecting science education and civic engagement by teaching through complex, unresolved public issues, and inspired by the SENCER Summer Institute (SSI) in Chicago, we established a collaborative interdisciplinary project for undergraduate students at the NYC College of Technology, led by faculty from the Biological Sciences and Mathematics departments. By combining epidemiology and microbiology with mathematics, the project addressed the need for public education and awareness of two emerging health care problems: (a) healthcare-associated infections (HAIs), formerly known as nosocomial infections (NIs), and (b) antibiotic resistance. HAIs are infectious diseases, acquired during a hospital stay, with no evidence of being present at the time of admission to the hospital. HAIs affect 5–10% of hospitalized patients in the US per year. Approximately 1.7 million HAIs occur in U.S. hospitals each year, resulting in 99,000 deaths (CDC, 2015). Today the complications associated with HAIs may be responsible for an annual $5–10 billion financial burden on our healthcare system (Cowan, Smith, and Lusk, 2019). Education and public awareness campaigns have been among the most effective tools used in many industries, including healthcare.  HAIs are easily transmitted due to the numerous microbes in the hospital environment, the interaction of healthcare workers with multiple patients, the compromised immunity of patients, improper use of antibiotics, and inadequate antiseptic procedures. More than 70% of these infections are caused by multi-drug resistant (MDR) pathogens, which contribute to increased morbidity and mortality (Black and Hawks, 2009). Antibiotic resistance is the capability of particular microorganisms to grow in the presence of a given antibiotic. The acquired resistance results from spontaneous mutations or from the transfer of resistance genes from other microbes (Drlica & Perlin, 2011). Each year in the US, at least 2 million people are infected with antibiotic resistant bacteria, and at least 23,000 people die as a result (CDC, 2018; Sifferlin, 2017). With the increased levels of antibiotic usage among humans, livestock, and crops, antibiotic resistant bacteria have increased dramatically in the past few decades (Foglia, Fraser, & Elward, 2007;  Sedláková et al., 2014). If a bacterial cell carries several resistance genes, relating to more than just one antibiotic, it is termed MDR, for multiple drug-resistant. Today these organisms are known as superbugs (Sifferlin, 2017).

The rising rate of antimicrobial resistance demands research and development of entirely novel drugs and new therapeutic strategies, from small-molecule antibiotics to antimicrobial peptides, from enzymes to nucleic acid therapeutics, from metal-carbonyl complexes to phage therapy (Medina & Pieper, 2016; Brunetti et al, 2016; Betts, Nagel, Schatzschneider, Poole, & Ragione, 2017; Nayar et al., 2015; Phoenix, Harris, Dennison, & Ahmed, 2015. 

The main goal of this research project was to study the complex factors that contribute to the occurrence and transmission of HAIs associated with antibiotic resistance in Brooklyn hospitals, to apply statistical analyses to the data, and to bring more awareness of this problem to our college community.

Student Involvement

Students enrolled in Microbiology (BIO3302) and Statistics (MAT1272) worked collaboratively on this project.  Undergraduate researchers, with a greater time commitment, were also involved in the project, through the college’s Emerging Scholars program (New York City College of Technology, Undergraduate Research, 2019) or the Honors Scholars Program (New York City College of Technology, Academics, 2019) the former providing stipends to students and the latter providing honors credit in a course. Both programs require student professional development related to research, such as abstract writing, preparing a poster, and making oral presentations, and each provides the opportunity for undergraduate students to conduct research with a faculty mentor and gain a practical understanding of the material learned in courses. Undergraduate researchers included students majoring in nursing and other health sciences (for whom both BIO3302 and MAT1272 are required), applied mathematics, and computer engineering technology.  

The specific objectives of the project were (a) to define the most common bacterial pathogens responsible for the spread of HAIs; (b) to identify risk factors and common infection sites; (c) to analyze microbial resistance to commonly used antibiotics, using data on multi-drug resistant bacterial isolates from hospitals in Brooklyn; (d) to study variations of resistance rates among different hospitals, using statistical analysis; (e) to study association among resistant isolates, using regression analysis; (f) to define the antibiotics with the highest bacterial resistance;  (g) to raise awareness of preventative measures for reducing HAIs;  and (h) to introduce students to an interdisciplinary practical field. 

Over six semesters, students performed comprehensive literature search on scientific articles by using the following key words: healthcare-associated infections, hospital acquired infections, HAI, nosocomial infections, antibiotic resistance, multi-drug resistance, epidemiology, Brooklyn hospitals. Additionally, they obtained already published data on multi-drug resistant clinical isolates from 15 coded (unidentified) hospitals in Brooklyn, (kindly provided by Dr. J. Quale, Division of Infectious Diseases, State University of New York Downstate Health Sciences University) (Bratu, Landman, Gupta, Trehan, Panwar, & Quale, 2006; Manikal, Landman, Saurina, Oydna, Lal, & Quale, 2002;  Landman et al., 2002; Landman et al., 2007). Using the data, students performed statistical analysis, using chi-squared tests on antibiotic resistance and regression analysis. 

Results

Most Common Bacterial Pathogens
and Risk Factors

As a result of extensive literature search, students defined twelve bacterial pathogens associated with HAIs. The most common ones in Brooklyn were Staphylococcus aureus, including methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, and Clostridium difficile. Next, the specific bacterial characteristics and the most prevalent sites of infections (urinary tract, lower respiratory tract, surgical incisions, and bloodstream) were described. Those at highest risk of contracting HAIs are patients with (a) a compromised immune system as a result of a transplant, HIV infection, malignant tumors, or possible prolonged treatment with antibiotics, cytostatics, or corticosteroids; (b) surgical procedures; (c) invasive procedures (e.g., urethral catheters, trachea ventilators, and/or intravenous therapy); (d) trauma and burn patients; (e) an underdeveloped immune system (e.g., newborns); and (f) diminished resistance (e.g. elderly); and (g) prolonged hospitalization, also a significant risk factor.

Statistical Analysis of Antibiotic Resistant Clinical Isolates

The next step of the project was to study the impact of multi-drug resistance on HAIs. One of the project participants established personal communication with Dr. J. Quale, who provided numerically coded data on clinical isolates collected from 15 Brooklyn hospitals. The percentage of resistance to the following most commonly used antibiotics was examined and compared: Amikacin (AK), Gentamicin (GEN), Ceftazidime (CAZ), Piperacillin-Tazobactam (Pip-Taz), Ciprofloxacin (Cip), and Imipenem (Imi). 

Analyses of the antibiotic resistance indicated that most of the clinical isolates were highly resistant to Ciprofloxacin, reaching 100% resistance among Acinetobacter baumannii. These results demonstrate that Ciprofloxacin should be used minimally for the tested HAI pathogens. Newer therapies such as Tigecycline and the combination of Polymixine + Rifampin showed much better bacterial susceptibility. 

Chi-squared tests (Table 1) revealed significant resistance variations of Klebsiella isolates to the antibiotics AK, CAZ, Cip, and Imi among the hospitals, that is, the variations of drug resistance of these isolates were too large to have occurred by chance alone.  Significant resistance variations of Pseudomonas isolates to AK, Cip, and Imi were also observed. The underlying causes of these disparities are most likely the differences in the inpatient population. Elderly and sicker patients usually take in more antibiotics and thus harbor antibiotic resistant bacteria. Patients in trauma centers are also more likely to develop antibiotic resistance. Furthermore, overuse or repeated use of a specific antibiotic by a hospital would lead to a higher resistance rate for that particular antibiotic. 

Interestingly, different scenarios were observed for Acinetobacter isolates. Variations of Acinetobacter resistance to the antibiotics AK, CAZ and Cip among the hospitals were not statistically significant; however, significant variations to Imi were observed. Patients with Acinetobacter infections are usually very ill and heavily exposed to antibiotics. Acinetobacter bacteria are resistant to most antibiotics, and thus for these isolates, variations of resistance to most antibiotics do not show statistically significant differences among the participating hospitals.

Table 1: Chi-Square Tests on Resistance Variations Among Hospitals.

Regression analysis showed high correlation between the antibiotic resistance of different pathogens. The correlation coefficient between Klebsiella and Pseudomonas was 0.929, Klebsiella and Acinetobacter – 0.825 and between Pseudonomnas and Acinetobacter – 0.859. The correlation between resistance of a specific organism to different antibiotics was also studied. Extremely strong positive correlation was found between Ceftazidime and Ciprofloxacin (R2 = .9961) in K. pneumoniae (Table 2), suggesting that these bacteria may carry the resistant genes for both antibiotics. Most hospital facilities nowadays use common antibiotics to treat infections. Within inpatient population there is a greater chance of contracting and spreading infections due to compromised or weakened immunity and the variety of pathogenic organisms present in such settings. Therefore, resistance to antibiotics that are prevalently used is higher.

Table 2: Correlation of Resistance to Different Antibiotics in Isolates of K. pneumoniae.
Preventative Measures

Another important objective of our study was to understand the need for proper preventative measures for reducing HAIs. In order to protect all individuals in the clinical setting—patients, healthcare workers, and public (visitors), CDC has laid down strict guidelines for handling patients and body specimens, termed Universal Precautions (CDC, 1998). All students, especially those majoring in health sciences, became acquainted with and learned these guidelines. The fight against the spread of MDR organisms begins with proper hand hygiene, correct use of personal protective equipment (PPE), and judicious use of pharmacologic treatment (Weinstein, 2001). Practicing proper frequent hand hygiene is essential to prevent the transmission of infections. It requires washing hands with soap and vigorous rubbing under running water for at least twenty seconds. Alcohol-base sanitizers are also used on unsoiled hands and require less time than hand washing. However, sanitizers are not effective in killing bacterial spores, whereas hand washing is effective on all microbes.  PPE includes gowns, goggles, or facial shields to protect skin and mucus membranes. Targeted pharmaceutical treatment, as a result of an antibiogram, should be prescribed instead of blind use of broad-spectrum antibiotics. Repeated bacterial cultures are necessary to assess the effectiveness of treatment. Additional preventative measures to reduce HAIs are (a) decreasing the number of skin punctures on a patient, since they provide opportunities for colonizing microflora; (b) following aseptic techniques when performing invasive procedures such as placing urethral and intravenous catheters; (c) reducing the duration of intravenous lipid use, since lipids are immunosuppressive, are easily contaminated, and support growth of fungi and bacteria; and (d) limiting the number of days for percutaneous deep lines. 

Technology is also playing a role in preventing and improving effective patient care through sharing health information. The Health Information Technology for Economic and Clinical Health Act allows hospitals and providers to share patients’ health information (ONC, 2019). In New York City many healthcare providers are taking advantage of programs like the Regional Health Information Organization, a network that contains a complete picture of patient’s health history. 

Assessment and Outcomes

The information gained in this project highlights the importance of immediate action in combating HAIs and supports the need for a public health campaign. The project provided students with the opportunity to conduct mentored interdisciplinary research, work as a team, perform scientific and mathematic analyses, participate in discussions, and exchange opinions. Students were enabled to better understand the complex interaction between microbiology, epidemiology, and statistics and to gain knowledge of the need for preventative measures to combat HAIs. Adding the research component to the Microbiology course has helped students connect the information learned in class to the real world and to recognize the importance of HAIs and MDR as a threat to public health. Throughout the project, in a creative environment, students defined the most common bacterial species responsible for the spread of HAIs in Brooklyn and identified the risk factors and common infection sites. Using the data on multi-drug resistant isolates, they performed statistical analysis to study the correlation between two different antibiotic resistances and variability among Brooklyn hospitals. Their work was disseminated by publishing flyers (Figures 1 and 2) for distribution in local hospitals and clubs. Currently, the information from the project continues to be used by the participating faculty in MAT1272 for “hand washing habits” assignments, which also leads to a discussion on antibacterial soaps, sanitizers, and the occurrence of superbugs.

Furthermore, different phases of the project were presented at the end of each semester at the Semi-Annual Poster Sessions for Honors and Emerging Scholars at the New York City College of Technology. Several undergraduate students presented their research at regional and national conferences such as NYSMATYC (NYSMATYC, 2011), MAA Regional Meetings, Math Fest (Ghosh-dastidar, 2010), the 13th Annual CUNY Pipeline Honors Conference, and the Annual Biomedical Research Conference for Minority Students (ABRCMS). The project was also presented at the SENCER Washington Symposium and Capitol Hill Poster Session in Washington DC. The work was also reflected in MAA Focus magazine (Baron, 2011), and in the NY Daily News.

Figure 1: Flyer with information about Nosocomial Infection (courtesy of Gillian Persue).
Figure 2: Flyer with information about Nosocoial Infection (courtesy of Michell Cadore)

In conclusion, we consider the research project very successful. Our main goal was achieved: to combine different subject areas, to address serious public health issues, such as HAIs and antibiotic resistance, and to bring more awareness in our community. The students were very enthusiastic and eager to learn and interacted very efficiently among themselves as a team.  The success of the project is best conveyed by the students’ reflections on their research work: 

“This was my first research project and it was challenging. I never thought I could do pathology research, but it opened a door to a new area. The experience was especially important for me, since health care workers can spread nosocomial infections. We’re supposed to help patients, but we can harm them. I would encourage everyone to do a research project in college. It’s definitely worth it.” 

“The most significant part of this project for me was working as an interdisciplinary team. I am proud to say that the results of our research were later presented on a state level at Cornell University in Ithaca, New York.” 

Acknowledgement

 This work was supported by a sub-award from SENCER, SSI 2009 to P.B. and the Emerging Scholars Program at New York City College of Technology. Many thanks to Dr. J. Quale, Division of Infectious Diseases, State University of New York Downstate Health Sciences University for sharing his knowledge and his valuable suggestions. We acknowledge the excellent research performance of all student participants, led by Rona Gurin, Aionga Pereira (currently a co-author), Farjana Ferdousy, Efrah Hassan, Cintiana Execus, Jessica Obidimalor, Hui Meen Ong, Philip Ajisogun, and Jennifer Chan Wu. 

Authors 

Liana Tsenova

Liana Tsenova is a professor of Biological Sciences at the New York City College of Technology. She earned her MD degree and specialty in microbiology and immunology from the Medical Academy in Sofia, Bulgaria. Dr. Tsenova received her postdoctoral training at the Rockefeller University in NYC. Her research is focused on the immune response and host-directed therapies in tuberculosis and other infectious diseases. She has co-authored more than 50 publications. At City Tech she has served as the PI/project director of the Bridges to the Baccalaureate Program, funded by NIH ($1.2million. She is a SENCER leadership fellow. She mentors undergraduate students in collaborative interdisciplinary projects, combining the study of microbiology and infectious diseases with chemistry and statistics, to address unresolved healthcare problems. 

Urmi Ghosh-Dastidar

Urmi Ghosh-Dastidar is the coordinator of the Computer Science Program and a professor in the Mathematics Department at New York City College of Technology. She received a PhD in applied mathematics jointly from the New Jersey Institute of Technology and Rutgers University and a BS in applied mathematics from The Ohio State University. Her current interests include parameter estimation via optimization, infectious disease modeling, applications of graph theory in biology and chemistry, and developing and applying undergraduate bio-math modules in various SENCER related projects. She was elected a SENCER leadership fellow by the National Leadership Board of the National Center for Science and Civic Engagement.

Arnavaz Taraporevala

Arnavaz Taraporevala is a professor of mathematics at New York City College of Technology.  She received her doctorate in statistics from Michigan State University. She is a member of the Curriculum Committee of the Mathematics Department and is actively involved in curriculum development.  Her courses include an intensive writing component and student portfolios.  Professor Taraporevala has served as a mentor to several students in honors projects. Her research interests are in stable processes and in pedagogical issues in mathematics. She co-wrote (with Professors Benakli and Singh) the text Visualizing Calculus by Way of Maple (New York: McGraw Hill Publishers, 2012).

Aionga Sonya Pereira

Aionga Sonya Pereira is a registered nurse. She graduated from Long Island University with a BSN and is currently working on her MSN. Her specialty areas and passion are emergency medicine and psychological health, and she has worked in both areas for the last six years. She is a reserve Air Force officer and is the current officer in charge (OIC) of mental health at the 459th ASTS at Joint Base Andrews. Most recently she joined the Mount Sinai Healthcare System as an RN. Her love for research started as an undergraduate student at the New York City College of Technology, where she participated in the Emerging Scholars Program. Aionga continues to seek ways to merge civic engagement research and nursing. 

Pamela Brown

Pamela Brown, PhD, PE, is associate provost at New York City College of Technology of the City University of New York, a position she has held since 2012. Before assuming her current position, Dr. Brown was dean of the School of Arts & Sciences for six years. Dr. Brown also served as a program director in the Division of Undergraduate Education at the National Science Foundation (NSF) in 2011–2012. She is a chemical engineer by training, having earned her PhD from Polytechnic University and SM from the Massachusetts Institute of Technology. Her research interests include development and assessment of student success initiatives.

References

Baron, L. M. (2011). Microbiology project adds life to mathematics. MAA Focus, 31(3), 19.  Retrieved from http://digital.ipcprintservices.com/publication/?i=72837 

Betts, J., Nagel, C., Schatzschneider, U., Poole, R., & Ragione, R. M. (2017). Antimicrobial activity of carbon monoxide-releasing molecule [Mn(CO)3(tpa-κ3N)]Br versus multidrug-resistant isolates of Avian Pathogenic Escherichia coli and its synergy with colistin. Plos One, 12(10). doi:10.1371/journal.pone.0186359

Black, J. M., & Hawks, J. H. (2009). Medical-surgical nursing: Clinical management for positive outcomes (8th ed.). St. Louis: Saunders.

Bratu, S., Landman, D., Gupta, J., Trehan, M., Panwar, M., & Quale, J. (2006). A population-based study examining the emergence of community-associated methicillin-resistant Staphylococcus aureus USA300 in New York City. Annals of Clinical Microbiology and Antimicrobials, 5(29).

Brunetti, J., Falciani, C., Roscia, G., Pollini, S., Bindi, S., Scali, S., . . . Pini, A. (2016). In vitro and in vivo efficacy, toxicity, bio-distribution and resistance selection of a novel antibacterial drug candidate. Scientific Reports, 6(1). doi:10.1038/srep26077

Centers for Disease Prevention and Control (CDC). (1998, June 24). Perspectives in disease prevention and health promotion update: Universal precautions for prevention of transmission of human immunodeficiency virus, Hepatitis B virus, and other bloodborne pathogens in health-care settings. MMWR Weekly, 37(24), 377–388. Retrieved from https://www.cdc.gov/mmwr/preview/mmwrhtml/00000039.htm

Centers for Disease Prevention and Control (CDC). (2015). Healthcare-associated infections: Preventing healthcare-associated infections. Retrieved from https://www.cdc.gov/hai/prevent/prevention.html

Centers for Disease Control and Prevention (CDC).  (2018). Antibiotic/antimicrobial resistance: About antimicrobial resistance; Antimicrobial resistance threatens everyone. Retrieved from https://www.cdc.gov/drugresistance/about.html

Cowan, M. K., Smith, H., & Lusk, J. (2019). Microbiology fundamentals: A clinical approach. New York, NY: McGraw-Hill Education.

Drlica, K., & Perlin, D. S. (2011). Antibiotic resistance: Understanding and responding to an emerging crisis. Upper Saddle River, NJ: FT Press.

Foglia, E. E., Fraser, V. J., & Elward, A. M. (2007). Effect of nosocomial infections due to antibiotic-resistant organisms on length of stay and mortality in the pediatric intensive care unit. Infection Control & Hospital Epidemiology, 28(3), 299–306. doi:10.1086/512628

Ghosh-dastidar, U. (2010, August 5). Math, our community, and civic engagement. Paper presented at MathFest 2010, Pittsburgh, PA. Abstract retrieved from  https://www.maa.org/sites/default/files/pdf/abstracts/mf2010-abstracts.pdf  

Landman, D., Bratu, S., Kochar, S., Panwar, M., Trehan, M., Doymaz, M., & Quale, J. (2007). Evolution of antimicrobial resistance among Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae in Brooklyn, NY. Journal of Antimicrobial Chemotherapy, 60(1), 78–82. doi:10.1093/jac/dkm129

Landman, D., Quale J. M., Mayorga, D., Adedeji, A., Vangala, K., Ravishankar, J., . . . Brooks, S. (2002). Citywide clonal outbreak of multiresistant Acinetobacter baumannii and Pseudomonas aeruginosa in Brooklyn, NY: The preantibiotic era has returned. Archives of Internal Medicine, 162(13), 1515–1520. 

Manikal, V. M., Landman, D., Saurina, G., Oydna, E., Lal, H., & Quale, J. (2000). Endemic carbapenem-resistant acinetobacter species in Brooklyn, New York: Citywide prevalence, interinstitutional spread, and relation to antibiotic usage. Clinical Infectious Diseases, 31(1), 101–106. doi:10.1086/313902

Medina, E., & Pieper, D. H. (2016). Tackling threats and future problems of multidrug-resistant bacteria. In M. Stadler & P. Dersch (Eds.), How to Overcome the Antibiotic Crisis (pp. 3–33). (Current Topics in Microbiology and Immunology, vol. 398.) N. p.: Springer International Publishing. doi:10.1007/82_2016_492

Nayar, A. S., Dougherty, T. J., Ferguson, K. E., Granger, B. A., Mcwilliams, L., Stacey, C., . . . Mcleod, S. M. (2015). Novel antibacterial targets and compounds revealed by a high-throughput cell wall reporter assay. Journal of Bacteriology, 197(10), 1726–1734. doi:10.1128/jb.02552-14

New York City College of Technology, Academics. (2019). Honors Scholars Program. Retrieved from http://www.citytech.cuny.edu/academics/honors-scholarships.aspx

New York City College of Technology, Undergraduate Research. (2019).  Emerging Scholars Program. Retrieved from http://www.citytech.cuny.edu/research/

New York State Mathematics Association of Two-Year Colleges (NYSMATYC). (2011). An interdisciplinary study on nosocomial infection and our community. Paper presented at the  43rd Annual Conference, NYSMATYC, Ithaca, New York. Retrieved from https://www.nysmatyc.org/conf2010/program_summary_2010-final.pdf

Office of the National Coordinator of Health Information Technology (ONC). (2019). Health IT legislation. Retrieved from https://www.healthit.gov/topic/laws-regulation-and-policy/health-it-legislation

Phoenix, D. A., Harris, F., Dennison, S. R., & Ahmed, W. (2015). Novel antimicrobial agents and strategies. Weinheim, Germany: Wiley-VCH.

Sedláková, M. H., Urbánek, K., Vojtová, V., Suchánková, H., Imwensi, P., & Kolář, M. (2014). Antibiotic consumption and its influence on the resistance in Enterobacteriaceae. BMC Research Notes,7(1). doi:10.1186/1756-0500-7-454

Sifferlin, A. (2017, December 25). The War on superbugs: How a forgotten 100-year-old therapy is saving lives. Time.

Weinstein, R. A. (2001). Controlling antimicrobial resistance in hospitals: Infection control and use of antibiotics Emerging Infectious Diseases Journal, 7(2). Retrieved from https://wwwnc.cdc.gov/eid/article/7/2/70-0188_article

World Health Organization (WHO).  (2016, August 17). Antimicrobial resistance: Global report on surveillance 2014. Retrieved from http://www.who.int/drugresistance/documents/surveillancereport/en

Download the article

Download (PDF, 1.6MB)