Special Section – Teaching Through COVID-19

From the Editors

It feels like ages ago that the World Health Organization announced that it had identified a  novel coronavirus virus that causes COVID-19. But that was just eight months in the past, during the first weeks of January 2020. So much has happened since then, and so much remains uncertain. By the middle of March, almost all colleges and universities had announced that they would be moving to entirely online classes for the rest of the spring semester, an unexpected transition never before experienced by higher education.

All of a sudden, rather than just connecting science and civic engagement in our classrooms, we were living it. STEM faculty were forced to make significant modifications to their courses with little time to plan for the transition. The reflections that follow are a first attempt to capture the range of what faculty tried, what worked, and what didn’t. It has been said that journalism is the first draft of history. We hope that what we have assembled here is a first draft of what it meant to teach through COVID-19 in the spring 2020 semester.

These are not formal research papers or project reports like those found in past issues of SECEIJ. Instead, we invited interested faculty to submit reflections of no more than 1,500 words-and all submissions were reviewed by the co-editors in-chief,. Some authors chose to include some references in their submission while others took a more personal approach.

These submissions presented us with a broad range of faculty creativity, thoughtfulness, and reflection. We hope you find reading them as thought-provoking and informative as we did.

Matt Fisher
Trace Jordan
Co-Editors-in-Chief

Download the special section

Download (PDF, 2.22MB)

List of Articles

Scroll down to see full text

A Reflection on Teaching During a Pandemic- Outbreak! – Joanne Bartsch

Interdisciplinary and Community Collaboration through the Transition to Distance Learning Caused by the COVID-19 Pandemic – Diane C. Bates, Jessica King, Kim Pearson, and S. Monisha Pulimoood

Teaching Emerging Diseases During an Emerging Disease Pandemic – Rachel A. Bergstrom

Encouraging Informal Learning in STEM Thr0ugh the COVID-19 Era – Natalie Brown, Sean Stevenson, and Stuart Thorn

How COVID-19 Uncertainties Became a Topic of My Class on Uncertainty – Jackie L. Collier

COVID-19 Response: A Bonus Assignment for Organic Chemistry Students – Shawn Hitchcock and Sabrina Collins

Teaching First-Year Composition Through COVID-19 – Theresa Confrey

UMB CURE Scholars Program Teaching Through COVID-19 – Jatia Mills

COVID-19 and the Political Context of Climate Change Solutions – Catherine N. Duckett

Teaching Through COVID-19 Part 1: COVID-19, Public, and Global Health: It’s Personal – Barbara J. Engebretsen

Teaching Through COVID-19 Part 2: Personal, Public, and Global Health: Translating Knowledge to Action and Change – Barbara Engebretsen, Kelly Cech, Josephine Peitz, Edgar Munoz, Tabitha Shonie

Teaching Geoscience Tools for Addressing Societal Grand Challenges: A Unique  Study-Away Experience During COVID-19 – Lisa Gilbert

Audio and Video Clips Provide Connections Between Authentic Voices, Social Justice, and Global Water Challenges – Laura Guertin

In Their Own Words: Students’ Reflections on Remote Science Education – Rebecca Hardesty and Melinda Owens, with Rachel Bennett, Maricruz Gonzalez-Ramirez, Andrew Hosogai, and Catherine Kuh

The First-Year Student in the Distance Learning Environment: Challenges and Opportunities – Reem Jaafar

An Innovation-Driven Approach to Virtual Learning: Using the Foundry Model to Transition Online – Stephanie N. Jorgensen, J. Robby Sanders, Pedro E. Are, and Andrea Are-Trigatti

Creative Tension in Teaching Through COVID-19 – Bob Kao

“Let me introduce you to what is changing our  world” – Caleb Kersey

Chemistry Labs Without Access to Chemistry Laboratory Spaces – Eileen M. Kowalski

Teaching Environmental Chemistry Through COVID – Stephen A. Mang

College Teaching During the COVID-19 Pandemic – Janet Michello

Informal STEM Education and Evaluation in the Time of COVID-19 – Scott Randol and Chris Cardiel

Distance Makes the Math Grow Stronger – Melanie Pivarski

A Light at the End of the Tunnel – Ginger Reasonover

Keys for Project-Based Design in the COVID-19 Era – Lynn Ameen Rollins, Andrew Martin Rollins, and Kurt Ryan Rhoads

Teaching Through COVID-19: Undergraduate Calculus Project on the Number of COVID-19 Cases – Sungwon Ahn

Democracy and Disruption: Science Education During a Pandemic – Mubina Schroeder

COVID-19 Connections: Anti-viral Teaching Strategy – J. Jordan Steel

Dr. Seiser’s Immunology Class or: How I Learned to Stop Worrying and Love the Textbook – Robert Seiser

Teaching Through COVID – Maria J. Serrano and Shazia Ahmed

Teaching Through COVID: Navigating Uncharted Waters – Mangala Tawde

Molecular Cell Biology: New Challenges and New Relevance in a COVID-19 World – Brian P. Teague and James B. Burritt

Critical Thinking and Data Understanding the Intersections Between Communication and Mathematical Modeling – Anne M. Stone and Zeynep Teymuroglu

Making Lemonade: Adapting Project-Based Learning in the Era of COVID – Bridget G. Trogden and David Vaughn

Reflecting on Teaching Presence While Transitioning to Remote Instruction – Leyte Winfield, Shanina Sanders, and Chauntee Thrill

Practicing and Simulating Social Distancing – Davida Smith and Anne Yust

A Reflection on Teaching During a Pandemic – Outbreak!

Joanne Bartsch

Carolina Day School, Asheville, NC

This piece doesn’t actually directly address the topic of teaching through COVID-19; I believe however, that my experience and that of my students as we face this pandemic has been deeply affected by my experiences with SENCER.

Carolina Day School, an independent PK-12 school in Asheville, North Carolina, has been represented at five of the last six SENCER Summer Institutes, and our Upper School faculty currently boasts seven SSI alumni. SENCER ideals have been incorporated not only into our science curriculum, but also into that of math, fine arts, social sciences, and English. But one of the most successful results of our involvement with SSI is Outbreak!, a unit taught to high school freshpersons. Outbreak! was developed, refined and implemented by SSI alumnae Joanne Bartsch, Prudence Munkittrick, and Nina LaFerla, based on our work at the Worcester Polytech and Roosevelt University SSI gatherings.

Outbreak! is simultaneously taught to ninth-graders in their Global Studies and Human Biology courses.  Our foundational idea for the unit is that the spread of a disease is the result of interactions between its agent, the host, and the environment—the epidemiological triangle. We want students to see how these factors all contribute to epidemics and to recognize that protecting human health requires an understanding of all parts of the triangle.

Through labs, small group work, class discussions, and long-term projects in their Human Biology class, students learn about the characteristics of and relationships between host and agent.  We cover the structure, life cycles, and virulence factors of agents as well as immune response and medical response (therapeutics and vaccinations) on the part of the host.  In Global Studies, students come to understand infectious diseases from the perspective of host and environment—demographics, geography, political structures, and socioeconomic factors. Again, through class discussion, projects, and group collaboration, they analyze causes of and responses to historical outbreaks of disease, from cholera to Spanish flu to yellow fever to AIDS. In the culmination of the unit, groups of students are presented with an imaginary outbreak of a real disease (MERS, polio, typhoid) in a location facing some kind of real crisis (Aleppo, Caracas, Guatemala City, Nairobi). The students are tasked with developing a response to this imaginary outbreak using accurate and current knowledge of the agent, the host, and the environment. Our students have navigated earthquakes, floods, civil wars, dictators, poverty, and privilege as they have imagined how to most effectively break the triangle in their given scenario.

We were one week away from implementing our fifth year of Outbreak! when I found myself in front of the student body as we hurriedly made preparations to transition to remote learning. It was my job to explain the necessity of social distancing from an epidemiological perspective. Since 75% of the students in the room had completed the Outbreak! unit, that’s where I began. Of course, I reminded them of how they had learned the necessity of breaking the epidemiological triangle; that reminder could come from any course or any teacher. But because Outbreak! did not ask them to rely just on science to solve a problem, and  because it allowed them to wrestle with a complex, capacious problem so similar to the one they were about to face in real life, the lessons they learned from it were, I think, far more useful to them than a recitation of basic facts. I reminded them that many of the responses we were seeing in real time were exactly the ideas they had developed on their own—mobile clinics, handwashing stations, educational campaigns, fundraising, resource mobilization, research, activism, and vaccination development. (In a bit of premonition, some of our students envisioned the importance of face masks and even developed personalization for them in order to enhance their use.)  I asked them to pay attention to all of these responses in the news over the next few months. Never before has the question “When am I ever going to use this?” had so clear and valuable an answer. 

While their response plan was in fact their final assessment, we finished the unit by playing the board game Pandemic, and I reminded them of the lesson from that as well—that any response to a pandemic like this one requires a full community commitment and collaboration among many partners. 

I have no SENCER-SALG on what happened in that moment, nor do I have one for what is happening now as our students deal with this pandemic and see its effects first hand. Anecdotes are not evidence, but I am convinced that the SENCER-inspired Outbreak! unit—and its relevance in this moment—demonstrate the value of implementing SENCER ideals in all classrooms.

Because of the difficulties of changing the interdisciplinary unit to remote learning, it was not taught in Spring 2020. I used parts of my side of it to help students understand the problems of COVID through the lens of biology and science. Even remotely, they continued to try to solve complex and capacious problems as they used their knowledge of the virus’s life cycle to imagine and “design” a therapeutic to treat the disease. And for next year’s freshpersons, Outbreak! will be updated to reflect what we have learned from this most recent “grand challenge.”

Interdisciplinary and Community Collaboration through the Transition to Distance Learning caused by the COVID-19 Pandemic

Diane C. Bates, Jessica King, Kim Pearson, and S. Monisha Pulimood

The College of New Jersey, Ewing, NJ

Research Supported by NSF Grant #1914869

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1914869 

We would like to share our experiences working with the Collaborating Across Boundaries (CAB) team during the Spring 2020 transition to remote learning.  The CAB team consisted of three sets of professors, whose classes were paired across science and non-science disciplines to work on a STEM-related community-engaged project.  These collaborations included:  (1) business and computer science courses, who worked with an environmental policy non-profit on a variety of projects, most of them focused on environmental issues like reducing the carbon footprint and recycling; (2) computer science and journalism courses, who worked with a non-profit news provider to improve content delivery on their website; and (3) environmental sociology and women’s and gender studies courses, who worked with a fifth-grade Girl Scout troop on projects related to sustainable energy. The following observations are derived from journals kept by the six participating professors, transcribed discussions among faculty participants, and the transcript of a focus group led by an outside evaluator.  We limit our findings to three observations about the transition to online learning that are unique given our collaboration between students in different classes and a community partner.  We found: (1) a small but important number of students struggled with online participation; (2) communication among students was similar to or more problematic than we have seen previously; and (3) community-engaged projects suffered because community partners were also rapidly transitioning to new procedures related to the pandemic.

  

A small but substantial number of students were unable to consistently participate in classes, even asynchronously, due to illness, illness in the family, technical difficulties, and/or a variety of other problems.  Because our college serves a population that draws predominantly from one of the early pandemic hotspots in the United States, this was likely a greater issue here than in other parts of the country.  One professor noted, “I had a number of students lose grandparents, take on additional responsibilities around the house, [or who] have just disappeared, so [the project] has sort of taken a back seat.”  Another explained, “At least one student, possibly two, contracted COVID-19, along with other family members. Another student found herself responsible for the care of both her mother and brother. Another student said there was no space at home to do schoolwork. Another had internet connection problems. Two students had no audio on their computers. Mental health issues became a consideration.” Professors noted that students were reluctant to explain their situation to them or other students.  Three common problems involve taking up care responsibilities for younger siblings or ill family members, sharing computers or physical spaces, and a variety of technological problems.  Our students also juggled new work responsibilities, such as one student who was “required” to work additional hours at an essential business because he did not have dependent children.   Students who struggled to participate affected the ability of other students to do the work; one professor explained, for example,  “Two of the students couldn’t get in touch with two other students in my class who were supposed to be working with them on this project, and so they ended up doing the bulk of the work. Then it turns out that one … almost checked out, was doing that because of personal reasons, and … they didn’t know the other students, didn’t tell them about it.” Professors generally responded with flexibility around deadlines, but our experience suggests that more systematic processes for students in these situations would be beneficial.

Students struggled with communicating with one another even more than usual, but this was mitigated by having previously established communications through a shared learning management system (LMS).  There was considerable variation here.  One professor noted what may be “reticence” or at least “unevenness” among students for taking responsibility to contact classmates outside of class, “and when you add to that students that they’re not seeing on a regular basis, I think it gets a little bit more complicated.”  Alternately, another professor found little difference before and after the transition: “Some groups continue to report that the collaboration was a complete failure and say their… teammates ignore all their attempts at communication; other groups continue to report better experiences.”  Students used many ways of communicating with their peers, but they clearly benefited from using an LMS that was monitored by professors.  One professor explained, “I’m not sure that I would have the stomach for another collaborative measure without the combined [LMS] tool. Almost nothing we’ve done, created, and inspired could have been done without this shared platform without it requiring tremendous hurdles and encumbrances.  And this is just amazing, the groups just post their stuff, they put it on the discussion board, other groups can comment on it, regardless of class; … it breaks all those barriers down in a way that signals that this is a project that’s about working together.” We thus emphasize the advantages of using an LMS for collaboration while remote learning. 

Working with community partners created additional coordination problems.  Community organizations were also facing shut-down pressures, and many understandably prioritized their own concerns before responding to students.  One professor lamented roughly two weeks into remote learning: “Our community partner has not responded to emails, so we don’t know what’s going on there.”  Another explained that the community organization with which they were collaborating “was not even able to distribute the material for procedures involving [remote] meetings until the end of April, … which meant that we couldn’t even meet with them on [-line] during most of the time when our students should have been collaborating with them.”   A third professor explained,  “In order for my students to execute their projects, they not only have to interact with community partners, they had to interview sources, other sources, [contact] government offices and others, so because of the pandemic, those sources often weren’t available or didn’t respond in a timely fashion.” All three collaborations had to be modified in order to conclude before the semester ended, in large part because of interruptions linked to working with community organizations.  This experience suggests that indirect service projects, where students work with guidance from a community partner’s staff, were more amenable to the transition to remote learning than were direct service projects, where students interact directly and continuously with members of the community.  Although direct service could in theory still occur, we found that it was not feasible given the time constraints of the Spring 2020 semester and the emerging situation of community organizations.

Teaching Emerging Diseases During an Emerging Disease Pandemic

Rachel A. Bergstrom

Beloit College, Beloit WI

Emerging Diseases (BIOL 215) supports student learning of complex microbiology and epidemiology concepts by using case studies and examples of outbreaks in the news (Ebola, influenza, and measles), including materials published in the SENCER model course (Bergstrom and Fass, 20) and accounts of historical events (AIDS and many outbreaks chronicled by Laurie Garrett in The Coming Plague [2020]). The immune response, vaccine biology, herd immunity, and viral replication and mutation seem less abstract when students see the context of the concept in an outbreak. Students frequently comment on this connection in course evaluations and note how it positively impacts their learning.

COVID-19 was a fascinating and relevant addition to Emerging Diseases this spring. But because there wasn’t much known about the virus or the disease, and because we had other viral diseases that we could learn from as we followed the outbreak, we didn’t spend much class time early in the semester focused on the novel coronavirus. As we learned about virus-host interactions through Ebola, influenza, and measles, we added knowledge on host specificity, spillover, and how population density affects the spread of a new viral disease. At the same time, we watched the pandemic unfold, learning why epidemiologists track outbreaks in terms of person, place, and time. We tracked the spread of COVID-19 through China (and then around the world) on the Johns Hopkins dashboard (CSSE at JHU, 2020), and explored how a change in the case definition led to a one-day spike of 15,000 new cases in China on February 13. 

In late February, my approach to COVID in class changed. We were no longer watching the outbreak from afar. We shifted from a distanced, academic fascination with understanding the biology of COVID and the impact of human behavior on COVID to experiencing the outbreak. Students wanted to know whether or not they should travel over spring break. And students were taking on the role of disease expert for their families and friends. They wanted to know more.  When we shifted to distance learning after spring break, it felt impossible to do anything but lean into the pandemic to provide some context for what we were all experiencing.

I structured the online portion of the class as a combination of synchronous and asynchronous content, as I had students all over the world and with many different responsibilities now that they had moved home. I posted background readings and instructional videos to our online learning management system (Moodle). I wanted to maintain some normal course structure, so we met during our regular class time, which I also recorded and posted to Moodle. These classes began with a pandemic update. I used narratives in the news to choose topics: vaccine trials to explore the FDA approval process; challenges and successes in COVID-19 testing to learn about PCR, rtPCR, ELISA, and antibody testing. We compared flattening the curve through social distancing to herd immunity and analyzed the White House’s plan to relax social distancing restrictions. 

I let student interest and inquiry guide our discussions, such as when students described with amazement that simple things like trips to the grocery store were now exciting. This evolved into a discussion of how people respond to an outbreak, from how my students thought we should all respond (in particular, wearing face coverings and maintaining social distancing measures when out in public) to how they were seeing friends, family, and strangers respond differently (ignoring guidelines for disease prevention and looking to conspiracy theories to explain our current realities). Here is where I noted the biggest shift in how students engaged with the course. 

When the outbreak is “over there,” whether Brooklyn (measles), Sub-Saharan Africa (AIDS), China (COVID-19), or West Africa (Ebola), building empathy for the fear and anxiety of the people experiencing the pandemic is mostly an academic exercise. Students understand that they should feel empathy, but it is often hard to internalize how that empathy can influence their understanding of the underlying human contribution to disease. In a normal year, we discuss cultural responses to and explanations of disease, but empathy and understanding for how some people respond to disease, including anti-vaccine and religious groups, and how we can responsibly work with (and not over or against) these groups is difficult to build. But this year students noted that they were, themselves, feeling the fear and uncertainty of living in an outbreak, as well as the boredom and anxiety of living under quarantine. They observed that they hadn’t before thought about how these feelings could easily lead them, in the absence of their knowledge about emerging diseases, to seek out alternative explanations for the disease and our response. They started to think about how they could even resist the guidelines meant to protect us. Students were fully experiencing and understanding that the human response to a disease outbreak is shaped by experiences, knowledge, and cultural influences far beyond basic microbiology and epidemiology. 

Teaching Emerging Diseases during an emerging disease pandemic was at the same time simple and challenging. Of course, the context and immediacy of the pandemic boosted student motivation for learning biological concepts. The physical distance of Zoom coupled with my own feelings of anxiety and exhaustion for the all-COVID-all-the-time nature of living in a pandemic wore on me and my students. In course evaluations, some students noted that they liked having a place to come twice a week for a reality check on the pandemic. And some students lamented that they felt like they missed out on other important disease models because we spent so much time on COVID. I think this means we hit a good balance. In years to come, I’ll be incorporating COVID into my regular schedule of diseases. As a universal experience for students, the power of COVID is that we can honor our shared understanding that outbreaks are powerfully shaped and influenced by human behavior and experience. 

References

Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). (2020). COVID-19 Dashboard. Retrieved from https://coronavirus.jhu.edu/map.html

Bergstrom, R. A., & Field Fass, M. (2015). Emerging infectious diseases (BIOL 215). SENCER Model Courses. Retrieved from http://ncsce.net/emerging-infectious-diseases/

Garrett, L. (2020). The coming plague: Newly emerging diseases in a world out of balance. n.p.: Picador.

Encouraging Informal Learning in STEM Through the COVID-19 Era

Natalie Brown, Sean Stevenson, and Stuart Thorn

University of Tasmania, Hobart TAS, Australia

The Peter Underwood Centre is a partnership between the University of Tasmania and the State Government with a mission to increase the educational attainment of young people in the state of Tasmania, Australia. A key focus of our work is to encourage informal learning that is child-led, engaging, and connected to opportunities both at the University and in the community. The Centre facilitates the Children’s University program (Shelley, Ooi, & Brown, 2019), where participants (aged 7–14) engage in validated extracurricular activities and collect hours of learning to be eligible to graduate in an annual ceremony.  A second initiative is our A-Lab, a technology-equipped learning space that facilitates engaging experiences, with a STEM emphasis. These are delivered in situ, in school or in community settings. Early in 2020, there was a planned expansion into an interactive STEM gallery in the heart of the city.  This collaboration with researchers, community, and educators, aimed to bring the research of the University to young people, teachers, and the community in innovative ways. Our chosen focus on STEM recognised its engaging and hands-on nature, the strengths of the University faculty, and the promise of STEM to contribute positively to Tasmanians and the economy of the state.

The COVID-19 restrictions brought the STEM gallery project to an abrupt halt in March 2020.  Staying at home, and learning at home, also affected activities that were supported and promoted through Children’s University.  The potential loss of momentum of these two projects came at a time when, more than ever, families were seeking ways to keep children and young people engaged and interested in learning. Our challenge was to continue to support Children’s University as well as maintain the momentum of the collaborative effort and optimism of the STEM gallery project. A complication was that many Tasmanian families face challenges with digital inclusion. Our solution was to develop two new, child-focussed media products. 

The Wonder Weekly is a full colour, child-friendly newssheet with stories, puzzles, activities, and challenges that can be completed at home without the need for a computer (see for example https://www.utas.edu.au/__data/assets/pdf_file/0003/1337601/The-Wonder-Weekly-June-8.pdf ). With support from a national supermarket chain, The Wonder Weekly is printed and distributed free of charge throughout the state, as well as being available online and through Tasmanian schools.

During a situation such as the COVID-19 pandemic, the media are inundated with information, opinions, and data that can become overwhelming, especially to young people. There is evidence that constant updates can cause elevated anxiety, and professionals advise limiting the amount of exposure to excessive or confusing media (Blackdog Institute, 2020). Consequently, we made a conscious decision not to focus articles on the virus, but to build important scientific literacy skills using other engaging content that would connect with Tasmanian children. 

Inspiring a sense of wonder and curiosity that drives inquiry is at the heart of developing scientific literacy in children. It can be the basis for an introduction to the language of science, causal explanations that draw on scientific theories, and the systematic processes that scientists use to collect, analyse, and interpret observations and data (see for example Callanan & Jipson, 2008). 

The editorial content of The Wonder Weekly has encompassed issues of biodiversity, biosecurity, and sustainability presented as stories that connect to children and introduce scientific language as well as research undertaken by scientists. Meeting the dog used to detect invasive species on Macquarie Island and hearing about conservation of the endangered red handfish are two examples. Stories have also reinterpreted scholarly work of University scientists in ways that are accessible to young people. Two examples are learning about active volcanoes on Australian offshore islands and examining what research into emu poo can tell us about habitat change. Challenges have ranged from the citizen science of bird identification, creating maps and plans, and building and testing structures using principles of engineering design.

A weekly free Zoom broadcast, UCTV Alive for Kids, was also launched, drawing initially from the scientists contributing to the STEM gallery project. Short multimedia presentations are followed by interactive sessions, where participating children can use the chat function to send questions to the presenters, mediated by a host. Directly connecting researchers to children and families provides outreach that sparks further interest, and, importantly, makes the science accessible and relevant. 

The UCTV content has been designed to complement The Wonder Weekly, with presentations from vulcanologists, engineers, and aquaculturists. The theme of sustainability was addressed through a multimedia presentation from a scientist who carries out an annual survey of plastic waste on a remote part of the Tasmanian coastline. The questions raised affirm that children have an inherent curiousity and are motivated to act upon this in positive ways. Questions following the plastics session included this one: What actions could individual children take in their homes, schools, and communities to reduce plastic and microplastic waste?

The COVID-19 situation has had a significant effect across the world on children and their families (Brown, Te Riele, Shelley, & Woodroffe, 2020). It has also provided opportunities to reach out in new and different ways. UCTV and The Wonder Weekly have provided platforms to connect university scientists with children in a format that is engaging and more sustainable than other methods of outreach. Material for both publication and presentation is easy to describe, has a defined purpose and boundaries, is cost effective, and is less time consuming than engagement modes. It also allows for a greater number of scientists (including young research students) to communicate their work to the community.

References 

Blackdog Institute. (2020). Coronavirus: Reassuring your child about the unknown. Retrieved from https://www.blackdoginstitute.org.au/news/coronavirus-reassuring-your-child-about-the-unknown/

Brown, N., Te Riele, K., Shelley, B., & Woodroffe, J. (2020). Learning at home during COVID-19: Effects on vulnerable young Australians. (Independent Rapid Response Report). Hobart: University of Tasmania, Peter Underwood Centre for Educational Attainment. Retrieved from https://www.dese.gov.au/system/files/doc/other/learning_at_home_during_covid_30042020.pdf

Callanan, M. A, & Jipson, J. L. (2008). Explanatory conversations and young children’s developing scientific literacy. In K. Crowley, C. D. Schunn, & T. Okada (Eds.), Designing for Science (pp. 19–44).  Taylor and Francis eBook.

Shelley, B., Ooi, C-S., & Brown, N. (2019). Playful learning? An extreme comparison of the Children’s University in Malaysia and in Australia. Journal of Applied Learning & Teaching, 2(1). Retrieved from https://journals.sfu.ca/jalt/index.php/jalt/article/view/93 

How COVID-19 Uncertainties Became a Topic of My Class on Uncertainty

Jackie L. Collier

School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY  

During the Spring 2020 semester I was teaching a section of SBU102, a freshman seminar course intended to help students connect with faculty in a more personal way than their other courses—often large, introductory-level lecture format—make possible. This was only my second time running the course, and the topic was the same as the first: Uncertainty.

The perception of uncertainty is a critical component of how the public interprets the reliability and implications of new scientific information. Clearly presenting uncertainty is also a particularly challenging task in communicating science, at least partly because scientists develop specialized habits and shorthands of thinking and talking about sources and impacts of uncertainty in their own field of study, while the general public, decision-makers, and even scientists from other fields, are likely to come to the conversation with different language. Nonscientists may perceive scientific statements of uncertainty meant to describe how well we know something as indicating instead that the results can’t be used to make decisions, or may perceive the change of results over time as an indication of bad science rather than the normal process of refining knowledge. We need to develop a common language by which to convey whether uncertainty in scientific results reflects measurement error (the limited precision and/or accuracy of a method), indeterminacy (the limited ability to know all relevant parameters in a complex system), or ignorance (things we don’t even know that we don’t know).

My long-term goal is to contribute to bridging this communication gap. As a first step, I’m learning to teach about the topic in SBU102. The course description reads: “Uncertainty is a fact of life. On matters small and large, we make individual and societal decisions in the face of diverse sources of uncertainty. Sometimes we explicitly acknowledge uncertainties, but often not. …. In this course we will think explicitly about uncertainty, and whether/how communicating more clearly about uncertainty can help decision-making in many contexts, with a focus on public policy decisions with a substantial scientific component” (https://you.stonybrook.edu/scientificuncertainty/sch-102-uncertainty/). My goals are that students will learn (1) to identify and describe different sources of uncertainty and (2) to apply that understanding to personal and public policy decision-making. This Spring, I incorporated an introduction to a structured form of decision analysis which integrates uncertainty by using Bayesian approaches to combine the probabilities of different outcomes with separate consideration of the utility (desirability) of each outcome, thereby identifying the choice most likely to lead to the best outcome.

I used a start-of-semester survey to gain insight into the students’ backgrounds, interests, and motivations for choosing my section of SBU102. The class attracts students from diverse majors, from arts through engineering, bringing many perspectives to broad class discussions. Although I assure them that “because it fit my schedule best” is a perfectly valid reason for choosing SBU102: Uncertainty, most students say they signed up because of genuine interest in the topic. Sometimes this interest is academic, but more often it is prompted by a desire to find better ways to make personal decisions in the face of uncertainty.

The main assignment for the semester, based on which students both gave a presentation and wrote a final essay, was to find an example of uncertainty affecting a public policy decision, do background research to identify at least two policy alternatives and their implications, and use the Bayesian framework for decision analysis to determine which option would have the best chance of producing the most desirable outcome. I gave the students great leeway in choosing an issue that fit their interests: topics this semester ranged from how to regulate “loot boxes” in video games, to rightsizing public investment in exploring space vs. the oceans, to gun control policy, to reducing discrimination based on skin tone in India.

The outbreak of COVID-19 had, of course, practical impacts on the class, forcing us to move our last several meetings (which included almost all of the students’ presentations) onto Zoom. But, because we were lucky to have the practical parts work out rather smoothly, the intellectual impact was greater. Of 15 students, four changed their initial topic and focused their project instead on some aspect of COVID-19 response: Was SUNY right to close campuses at spring break rather than finishing the semester in person? Is it better to buy groceries in person or online? Should wearing face masks be mandatory or optional? Could there be positive environmental outcomes from COVID-19 if, rather than returning to business as usual, online attendance at meetings remained a real option? The Bayesian decision analysis led these students to conclude, respectively: yes, online, optional, and yes.

The end-of-semester class survey showed that most students expected the decision analysis framework they practiced in this class would be generally useful in their personal and academic lives. Although most of them did not want to do the actual math, simply having this structured approach in their toolkit helped them feel better able to manage uncertainties in their decision-making. I expect the pandemic to continue offering them opportunities to practice.

Perhaps this way of explicitly accounting for uncertainty can also form the basis for improving communication about uncertainty in science. That will be my focus for next Spring, if the uncertainties resolve in favor of another year for SBU102: Uncertainty.

COVID-19 Response: A Bonus Assignment for Organic Chemistry Students

Shawn Hitchcock

Illinois State UniversityNormal, IL

Sibrina Collins

Lawrence Technological University, Southfield, MI

Abstract

The global pandemic caused by the coronavirus (COVID-19) is illustrating in real time why the field of chemistry is so important in developing a vaccine to stop the spread of COVID-19. The race to find a cure for COVID-19 has led researchers to evaluate various potential treatments such as the antiviral drug Remdesivir, which was developed previously to treat Ebola. This chemistry exercise focuses on students’ applying chemistry concepts to the Remdesivir molecule. Students enrolled in an organic chemistry survey course were given a bonus assignment to evaluate the antiviral drug.  Effective engagement provides students with the opportunity to see the importance of what they are learning in the classroom.

Keywords: Organic Chemistry, Stereochemistry, Student-Centered Learning, Drugs/Pharmaceuticals, Inquiry-Based/Discovery Learning, Communication/Writing, Second-Year Undergrad

Remdesivir (Figure 1) is an antiviral drug that was previously developed to treat Ebola but is now being evaluated as a potential treatment for patients diagnosed with the coronavirus (COVID-19) (Jarvis, 2020). Currently, there are over 15.5 million confirmed global cases of COVID-19, with over 4.2 million cases confirmed in the United States (CDC, 2020). We have utilized the Remdesivir drug to develop a bonus problem set for an organic chemistry survey course (CHE 220-A) with 26 students at Illinois State University (Normal, IL). The students are primarily from diverse majors including nutrition and dietetics, agriculture, and environmental health and safety. 

Figure 1: Remdesivir

The bonus problem set focused on the Remdesivir molecule included the following questions:

  • Examine the chemical structure of Remdesivir provided. Identify the total number of chiral centers in this molecule.
  • Identify the functional groups present.
  • There is an amino acid fragment in this molecule. What is the name of the amino acid?
  • Identify the most polar region in this molecule.
  • Identify the furan ring in this system.

Independent of the phosphorus chiral center, the students were asked to determine the number of chiral centers and then calculate the number of potential stereoisomers. The correct answer for the Remdesivir molecule is 5 stereocenters, and consequently 25 = 32 stereoisomers. Approximately, 35% (N = 9) of the students answered both questions correctly, while 38% (N = 10) did not determine the correct number of stereocenters, but did properly calculate the number of stereoisomers. Two students (8%) correctly determined the number of stereocenters, but did not properly calculate the number of potential stereoisomers. Five students (19%) did not answer either question correctly.

The students enrolled in the organic chemistry survey course provided very positive and thoughtful feedback on the bonus assignment: 

“My opinion on the bonus assignment was that it was a really interesting assignment. I like how we are able to relate current situations to what we’re doing in class (although unfortunate that we’re going through this type of situation).”

“I personally enjoyed the assignment, I didn’t feel as though it was too difficult to complete, and I enjoyed completing something that was connected to the pandemic we are all living through currently. I think the topic made doing the assignment much more interesting.”

“I thought this assignment was a good one, because this is something we are all living through and learning more about its organic chemistry was interesting and educational for the sole fact that most of us, the younger generation isn’t taking it as serious as it should. I thought it was a cool assignment, thank you!”

In addition, the crystal structure of Remdesivir Dichloromethane Solvate Monohydrate is found in the Cambridge Structural Database (Siegel et al, 2017). Thus, organic chemistry students could also visually examine the structure of Remdesivir to help them identify the chiral centers within the molecule. (Inorganic chemistry students could identify the potential metal binding sites within the structure.)

Although the bonus chemistry assignment did not target general chemistry students, the Remdesivir molecule can be used to focus on concepts such as mass percent composition and VSPER (Valence Shell Electron Pair Repulsion) Theory for the general chemistry demographic. The first-year students could answer the following questions:

The antiviral drug Remdesivir has the following molecular formula C27H35N6O8P with a molar mass of 602.6 g/mole.

Calculate the mass percent of carbon (C) in Remdesivir.

Calculate the mass percent of oxygen (O) in Remdesivir.

Using your knowledge of VSEPR Theory, predict the geometry around the central phosphorus (P) atom in Remdesivir.

Would you expect Remdesivir to be polar or non-polar? Would you expect Remdesivir to exhibit dipole-dipole forces? Why?

Furthermore, chemistry faculty could also develop questions based on the dosage of Remdesivir for treating patients diagnosed with COVID-19, such as the following: If the proper dosage of Remdesivir is XX mmol/kg body weight, how many mg would a 65 kg person require? (There is limited data available, but a single dosage of 200 mg has been reported for Remdesivir.) This type of question emphasizes the importance of stoichiometry and concentrations of solutions. 

Although the bonus chemistry assignment focused on the antiviral Remdesivir, it can certainly be applied to other potential treatments for COVID-19. At this time, Remdesivir is not a cure for COVID-19 (Cortez, Kresge, & Sink, 2020). The global pandemic caused by the novel coronavirus has illustrated in real time the importance of chemistry to solve ongoing challenges in society. Furthermore, the race to develop new treatments for COVID-19 provides students with the opportunity to see that the concepts they are learning in the classroom are critically important. Making key connections between chemistry concepts in the classroom and real challenges facing our society remains an important strategy for educators as we work to engage the next generation of chemists.

The authors declare no financial interest.

Acknowledgments

The authors wish to thank the students enrolled in CHE 220-A course for their contributions. The authors also thank Dr. Lisa Eytel (Boise State University), Dr. Joanne Stewart (Hope College) and Dr. Gregory McCandless (University of Texas at Dallas) for their contributions.

References

Centers for Disease Control (CDC). (2020). Cases of coronavirus disease (COVID-19) in the United States. Retrieved from https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html

Cortez, M. F., Kresge, N., & Sink, J. (2020, April 29). Fauci calls early data from Gilead virus-drug trial “good news.” Bloomberg. Retrieved from (https://www.bloomberg.com/news/articles/2020-04-29/gilead-remdesivir-trial-for-covid-19-has-met-primary-endpoint

Jarvis, L. M. (2020). Scaling up Remdesivir amid the coronavirus. Chemical & Engineering News. Retrieved from https://cen.acs.org/biological-chemistry/infectious-disease/Scaling-remdesivir-amid-coronavirus-crisis/98/web/2020/04?utm_source=Newsletter&utm_medium=Newsletter&utm_campaign=CEN 

Siegel, D., Hui, H. C., Doerffler. E.,  Clarke, M. O., Chun, K.,  Zhang, L., Mackman, R. L. (2017). CCDC 1525480: Experimental Crystal Structure Determination. The Cambridge Structural Database. doi: 10.5517/ccdc.csd.cc1n6d19

UpToDate. (2020). Remdesivir drug information. Wolters Kluwer.  Retrieved from https://www.uptodate.com/contents/remdesivir-united-states-investigational-agent-refer-to-prescribing-and-access-restrictions-drug-information#F54175145

Teaching First-Year Composition Through COVID-19

Theresa Conefrey

School of Engineering, Santa Clara University, Santa Clara, CA

While teaching my first-year composition course during the ongoing COVID pandemic was challenging, it offered a unique opportunity to teach SENCER ideals that often seem very abstract to students.  How to feed a rapidly increasing population while sustaining the health of the planet was the topic that I had planned for my science-and-society-themed course.  I intended to focus on the 2019 report by the EAT-Lancet Commission, a group of international scientists, who came together to solve the intertwined issues of climate change and world hunger.  

These scientists proposed the plant-based “Planetary Diet” as the best compromise to relieve food insecurity and simultaneously reduce climate change.  Like me, students appreciated the symmetry and simplicity of a diet that could promote both our health and that of our planet. However, they argued that no matter how beneficial this way of eating might be, it would never be adopted, because most people would not be willing to accept such a drastic reduction in their meat consumption. “If most Americans won’t go for ‘Meatless Mondays,’ they claimed, “how will they ever agree to a plant-based diet?”  Others added that even if Americans would agree to change their eating habits, it would not solve the problem, because international cooperation would be required for global change. 

Once I started teaching through the COVID pandemic, I began to see the potential for some valuable comparisons between these interconnected, global issues.  I asked my students to consider all the recent changes to our lives that we have accepted during the pandemic.  We have seen college courses move online, people staying home, and restaurants, malls, and other non-essential services closing.  Not only that, but conducive legislation at all levels was quickly put in place, and cooperation and collaboration were achieved; many people changed their behaviors and followed lockdown restrictions more for the benefit of vulnerable others than for themselves.  Before the pandemic was declared, few might have expected that China, South Korea, and European countries, initially hit hard and hit early by COVID, would have been so willing to share their research findings and tracing expertise with the rest of the world.  And, in terms of global cooperation, we have witnessed a significant amount of collaboration around developing a vaccine, suggesting that the sharing and cooperation that we would have deemed impracticable are indeed feasible.  

Some students, for whom the devastating forest fires in Australia were only a distant memory, objected that COVID and sustainability are not comparable because the former is urgent and tangible, whereas climate change is viewed as less immediate and abstract.  However, what is undeniable to our students is the old adage, “Where there is a will, there is a way!”  When a situation is understood as sufficiently serious, individuals and societies are able to bring about changes that earlier might have seemed too expensive, too complicated, too controversial, and too inconvenient.  And, we have seen how these changes have been supported at the international, governmental, institutional, and local level by funding, legislation, and widespread support from the public.

Another teachable moment for my students has been the very public nature of science unfolding in the media.  Suddenly science is of interest to everyone, and we are glued to our screens following the latest theories on how and where COVID-19 originated, its incubation period, how to treat it, and how to protect our communities.  Students have watched how science-based recommendations have evolved and changed and how some aspects are still highly contentious, such as treatment protocols and face coverings. They have witnessed how some people have become impatient with the scientific method because of its plodding pace and inherent fallibility, and have sought immediate and definitive answers from fake news sources that seemed more certain and unwavering in their claims. Where posts lacking credibility have gone viral and propagated dangerous advice, students have realized that not all facts are equal and that polished and persuasive appeals are not always trustworthy and reliable.  Now that we have seen that fake news can kill, it has become easier for me to stress the importance of investigating sources and sifting through the science.  The pandemic has also allowed me to highlight the socially constructed nature of science-based recommendations, how the recommendations regarding COVID-19 arise not just from science but also from society.  The recommendations and legislation around wearing a face mask, which have varied from continent to continent and also from state to state, can be seen to be inseparable from politics, economics, culture, values, and everything else that makes us human. 

  Nowhere has the COVID pandemic intersected more closely with our course topic than in the disruption it has caused to local and global food supply chains. On the bright side, one of my students suggested that the temporarily reduced availability of meat and higher prices might have been an incentive to prepare something other than meat for dinner.  On the darker side, social inequities were revealed in meat processing plants, which were mandated to reopen and stay open during the pandemic.  Statistics show that almost half of the COVID hotspots were linked to these plants, which disproportionately employ people of color, who tended to have poorer health outcomes if they contracted the disease.   

Despite the challenges of teaching through COVID-19, there is room for optimism.  Complex and capacious global crises such as COVID reveal that collaboration and cooperation are possible.  More than that, they teach our students the importance of civic scientific literacy and the need for accurate information from multiple perspectives to solve perplexing and far-reaching problems.  Teaching through COVID has helped me emphasize that as citizens in our globally connected world we can make a difference. If students want to do their bit for sustainability and other global issues to come, they need to integrate their learning and practice civic engagement by becoming critically thinking, engaged citizens.    

UMB CURE Scholars Program Teaching Through COVID-19

Jatia Mills

University of Maryland, Baltimore

The Continuing Umbrella of Research Experiences (CURE) is a research training and career-development initiative funded by the National Cancer Institute, which focuses on building and sustaining a pipeline of students at various career levels, who come from groups shown to be underrepresented in biomedical sciences. The University of Maryland, Baltimore (UMB) is unique in being the first academic institution to focus on increasing the pool of underrepresented students in the West Baltimore area, beginning at the middle school level, to pursue science, healthcare, and broader STEM careers.  The CURE program has a collective of eight dedicated middle school teachers and paraeducators who assist in building up and supporting their students in pursing their goals through scientific learning.  Topics of learning include Anatomy, Chemistry/Food Science, and Coding/MESA/Robotics.  Students are also provided the opportunity to present scientific posters at the CURE STEM EXPO and to compete with fellow scholars for prizes specific to their topic of study.  The goal of this report was to gain a true understanding of what it was like for the middle school teachers and paraeducators of the UMB CURE to teach through COVID-19.  This report represents the perspectives of a total of seven UMB CURE educators, including five phone interviews and two written statements, and details their experiences as teachers and paraeducators during the COVID-19 pandemic. 

Technical Quandary

One of the greatest challenges of this current pandemic was the requirement that all learning be computer based.  Several of our teachers and paraeducators expressed concerns about the students’ lack of access to the internet.  When interviewed about her challenges of teaching through COVID-19, one middle school science teacher stated, “Being in Baltimore City, many students struggled to obtain devices or working internet. Students who did have a working device often had to share it with other siblings.”  This seems to be a common theme among our CURE instructional staff and students.  A CURE middle school special education teacher also worked with students in homes “with the only electronic device present being their cell phone and various other brothers and sisters using the device or internet connection; some still with no internet service at all.”  Even with these challenges, our CURE teachers and paraeducators, with support from the program, managed to go the distance in assisting students in adapting to this new wave of educating during a pandemic. 

Making Adjustments in Teaching Style

Many of our CURE teachers and paraeducators found that they had to make major adjustments in their structure of teaching because of the COVID-19 pandemic.  In an interview, a CURE teacher and UMB faculty member recalled the early days of teaching through the pandemic: “Initially, we tried to be very structured with classrooms. Here is your assignment for week by week. . . . Then we decided they were just too overwhelmed with their original classwork from their schools.”  From there, the teacher and her colleagues decided to take a different approach: “Let’s give them merits for completing their work . . . and give them praise or shoutouts for completing work.”  They noticed that this created a boost in morale for the students and “[kept] the energy up.”  One middle school science teacher can also attest to the new requirements of teaching through the pandemic.  When asked about the new structure of teaching through COVID-19 she commented, “I had to make real time adjustments and consider that some of my students still do not have at this moment access to technology or internet access so it forced me to not be so stringent with my demands in relation to when the students [could] turn in assignments. . . . It has opened my eyes and allowed me to be more flexible.”  Another CURE teacher also realized the importance of “[making] time to celebrate scholars for their accomplishments, . . . and scholars react positively because they know how much it meant to do that work.”  

Going the Extra Mile

They have gone above and beyond by assisting students in finding internet access and even helping some of the students’ parents, who were dealing with growing household costs.  “When you think about the health disparities already in the city of Baltimore and the [lack of] access to health care, . . . knowing my scholars and their families are affected, it gets to my heart,” a CURE teacher and UMB faculty member shared.  One paraeducator explained that instructional staff have gone so far as to deliver food to families. “We have to make sure everybody is all right. . . . So if someone needs food, they send it so they can get it and wear protection.”  Although we are all taking responsibility for our own safety, it is evident that the support system within the CURE program has been beneficial to not only the CURE students, but the CURE parents/caregivers and CURE instructional staff as well. 

Student Growth

Some of our CURE teachers and paraeducators had a welcome surprise of an increase of curiosity in science inspired by the COVID-19 pandemic.  One paraeducator, when commending her class, touched on how “we didn’t know what it was at first but now they are getting a better understanding of what this virus is. But not just the virus, but of their projects on cancer and cancer of the lungs . . . and how it relates to their family members and [they] have learned so much and … want to help their family.”  It is evident that these students have not only learned research skills but are now modeling the CURE program in actively engaging in community awareness of health disparities.  Much like SENCER, the UMB CURE has proved to be an integral piece in the duty to encourage scientific civic engagement.  In supporting these scholars, the CURE teachers and paraeducators have played a key role in the development of the next generation of scientists.  

Reflection

Interviewing these teachers and paraeducators gave me great insight into the struggles of being a middle school educator and dealing with a pandemic all at once.  I have learned that being an educator within Baltimore City can be a challenge in itself.  Dealing with both a lack of support and resources has always been an uphill battle that these educators must somehow fight every day.  From this experience I have a better understanding of what it takes to adapt in your work in order to progress.  Although the work is hard, the middle school CURE teachers, paraeducators, and administrators have managed to do an excellent job of working together to ensure the success of their students. 

Acknowledgments

We would first like to thank the UMB CURE team members: STAR-PREP Postbaccalaureate Program/ Research Fellow, Jatia Mills, BS for joining the Evaluation Team, conducting teacher interviews, analyzing academic performance data, and helping to ensure the success of this project.  Thank you to all the teachers and paraeducators: Shareen Aarons, BS; Sonya Dixon, MS; Ann Marie Felauer, DNP, CPNP-AC/PC; Hester Johnson; Debrah Mitzel, BS; Madeline Nuñez, MEd; and Barrington Moore, MS, for their participation in this Teaching Through COVID-19 reflection.  Also, thank you to the other fellow Evaluation Team members: Assistant Professor, Department of Epidemiology and Public Health and Associate Director, STAR-PREP Postbaccalaureate Research and Education Program, Laundette Jones, PhD, MPH; CURE Program Assistant, Martina Efeyini, MS; Adjunct Faculty, Graduate School and CURE Director of STEM Curriculum and Programs, TaShara Bailey, PhD, MA, and CURE Executive Director, Gia Grier-McGinnis, DrPH, MS, for their contributions to the reflection and its production.  This project was sponsored by The National Cancer Institute, the National Institutes of Health (NIH), under the P30 supplement (NCI P30CA134274-11S1).  

COVID-19 and the Political Context of Climate Change Solutions

Catherine N. Duckett

School of Science, Monmouth University, West Long Branch, NJ 

As educators, we want students to be able to apply material to solve problems, possibly in novel situations. This spring, addressing the COVID-19 pandemic in class was imperative because of the social disruptions, but it also offered an opportunity to ask the students to transfer knowledge of social and political responses to the pandemic to other problems informed by science: in my case, climate change. At the time our campus closed, we were making a planned transition from focusing on climate science and technological solutions to climate crisis to discussing political solutions in my course, “Science and Politics of Climate Change,” a senior-level interdisciplinary general education course with 22 students.

My students were near the epicenter of the COVID crisis at Monmouth University in New Jersey, which closed for spring break four days early because of an illness on campus. Consequently, they were paying attention. In the week before we returned to teaching, now fully online, scientists and journalists began writing about the COVID-19 pandemic, with some proposing solutions similar to actions that can help address the climate crisis, and I incorporated comparisons of these scientific and political solutions in class. This was, unexpectedly, a crashing success. Students were watching the news differently than previously, and the COVID crisis helped them apply what they were seeing and feeling to present and future climate problems and solutions.

At the beginning of the semester, most of my students were not paying attention to the news. I struggled to address my students’ distaste for politics; a majority of them expressed in anonymous polling and in comments on Climate Interactive simulations that politics is “dirty” or “unpleasant,” and therefore dangerous or undesirable to engage in. Students also believed that effective implementation of climate solutions was simply unbearably far away. Moreover, they had difficulty understanding systemic elements of climate injustice. 

After the extended break, I made the course asynchronous and streamlined most assignments to free up emotional and intellectual “bandwidth” for the exigencies of the lockdown and other societal uncertainties.  We began with one week of online discussions of COVID impacts on students, with explicit instructions to compare and contrast COVID to the climate crisis. I did not have high expectations about their performance or my abilities to leverage teaching COVID and climate for greater understanding. Because of the fast-moving and unsettled educational and social environment, I was simply aiming to assess the negative impacts of the COVID crisis on students and keep them engaged in the class.  

To my surprise, student responses were very thoughtful. Middle-of-the-road students were more highly engaged with the material than they had been before break. All of the students in my class recognized that the COVID-19 response was analogous to a lack of political will to address climate change and many recognized the signature of science denial in both responses, which was something many in my class had struggled to accept and understand. (I obtained permission to quote student work after final grades were submitted.)

A Business major wrote: 

The reading that I found more persuasive for this week was “Meet the Climate Science Deniers Who Downplayed COVID-19 Risks.” Its focus was on the organizations and individuals who claimed the Coronavirus would not be as detrimental to society as it is. This reading also clearly connected the claims of these individuals with their retractions as things got worse. This makes me believe they are truly deniers of science.

In the last four weeks of the course, we discussed political and technical solutions to climate crisis without specific attention to COVID. However, students continued to compare needed climate solutions to emissions results achieved in various areas because of COVID lockdowns and economic slowdown. Their comments were clear indications that they were paying attention to the news. More importantly, they identified political will on the part of individuals, corporations, and governments as critical to climate adaptation and mitigation successes. In the final exam, I asked, “What has the COVID-19 crisis taught us about the ability of societies to change quickly and forcefully? Can we apply these lessons to the climate crisis?”

Every student in class was very clear in answering this question: they believed that the forceful response to the COVID crisis indicates that societies do not prioritize the climate crisis. Comparisons of the COVID-19 response were personally galvanizing to several students and helped them to understand climate injustice as well. As a Marine Biology and Environmental Policy major wrote:

As devastating as the COVID-19 pandemic is, it revealed a lot of truths about our society and the way we conduct our lives. We are going to be able to use this valuable information in the fight for climate action. Never again, will we tolerate hearing that it is “impossible” to do anything. …. There is no longer an excuse for prioritizing the fossil fuel industry and the economy over the well-being of people.

Most students embraced political action, some for the first time. A Psychology major, for example, wrote: 

I have never been involved in politics because I think it is very messy and intimidating. However, it is important to be engaged in politics because who and what we vote for determines our future. I am going to research political leaders and proposals to gain knowledge on their values and goals and will vote for ones that align with what I think is best for our future. I will vote for people and proposals who have climate change plans as their top (if not first) priorities.

Student responses made clear that because they were personally affected by COVID, which the widely quoted cognitive psychologist John Cook likened to “climate crisis on fast-forward,” they paid more attention to politically motivated denial of climate science and were willing to reconsider their views on communal actions for the public good. 

This raises the question: Does teaching through crisis, any crisis, help students focus on possible connections to the material? Or was this focus and understanding the result of specific parallels between COVID-19 and climate crisis? These questions remain unanswered, but my student responses have convinced me to continue to compare COVID and climate solutions next semester and to explore connections with any crisis in any semester more deeply.

Teaching Through COVID-19
Part I: COVID-19, Public, and Global Health: It’s Personal

Barbara J. Engebretsen

Wayne State College, Wayne, NE

Introduction 

The first week in March, I sent students off with my traditional spring break advice, “Rest, refresh, and return, ready to finish well.” Only this year instead of adding, “and be good,” I quoted a Johns Hopkins tweet much to their surprised amusement, “and wash your damn hands.” Beginning in January, as a professor teaching Introduction to Personal, Public, and Global Health (PGH 200), I had been following and occasionally discussing in classes the developing news of the novel coronavirus. When I took students to the Midwest Global Health Conference at Creighton University in mid-February, we attended an update on the status of and preparedness for the “2019 Novel Coronavirus” by Dr. Sharon Medcalf of the UNMC College of Public Health and Biocontainment Center. Though aware of the seriousness of the quickly developing pandemic, none of us dreamed this would be the last time we would be together. 

That week before spring break, the President’s Council on Diversity (PCD) asked me to prepare a presentation on “COVID-19 and Xenophobia.” As a physiologist, my evolution into public and global health was born of a growing disturbance to my professional homeostasis. The advancing sciences of non-communicable diseases (NCD) were not translating into healthier people. Indeed, the obesity and NCD epidemics were escalating, with a disproportionate preference for marginalized and vulnerable communities both domestically and globally. At the heart of my teaching philosophy is a desire to translate knowledge into action and change. In response to the PCD invitation, I suggested we assemble a panel to promote civil discussion and understanding, inviting a microbiologist and political scientist to join me. We began preparing for the panel over spring break. 

By March 12, the college decided to prolong spring break for another week. The next day, they decided to transition all classes to remote delivery. My initial reaction combined emotional exhaustion with uncertainty. Everything had changed in a matter of days. Thoughts of graduating seniors, and international students indefinitely trapped in the USA or prematurely taking the earliest flight out, tempted me to give up. I considered calling the semester done, assigning grades earned by that time. For a few days, I was overwhelmed with immobilizing grief.  

But grief for me has a way of weaving passion into action, daring me to “get off the couch” and do something. This humble reflection articulates how COVID-19 has reminded me that as a teacher, I am foremost and forever a student, learning for, with, and from my students. In Part II, you will hear some of their remarkable stories. 

Teaching, Learning, and Moving Forward Through COVID-19 

Three principles guided the revision of PGH 200 to remote delivery: First, I was acutely aware that if I was wrestling with complex emotions and logistical issues related to these unprecedented challenges, students would be as well. And so I made it a priority to be available, supportive, and flexible. Second, I wanted to maintain the academic integrity of my classes, so that in completing this revised semester, students would have an understanding of course content equivalent to that of students from “non-COVID-19” semesters. Finally, I was faced with a daunting task—how would I incorporate the intimately relevant lessons we have all been living during this time of unprecedented historical significance into the revised PGH 200 class without overwhelming my students, or myself? 

PGH 200 introduces students to basic epidemiology; global health and demographic transitions; and the biological, behavioral, environmental, and social determinants of personal and public health trajectories. Students had just finished reading Mountains Beyond Mountains (Kidder, 2003), gaining a glimpse of their privilege as they learned about health in Haiti. They had prepared service-learning projects to promote health literacy, advocacy, and healthy lifestyles at Wellness Fair and World Speech Day events when they returned from break. The course would conclude with units on environmental health and a summary informed by a Lancet Commission report titled “The Global Syndemic of Obesity, Undernutrition, and Climate Change” (Swinburn et al., 2019), examining the synergistic interactions of climate change, NCD, and emerging infections. For their capstone assignment, students would work in groups studying a global health issue, and would develop a proposal for a hypothetical $10,000 grant addressing the issue. A personal action plan would commit to improving their personal health, with an understanding of how it would impact public and global health. 

After surveying students for their wellbeing, internet, and textbook access, I divided the COVID-driven course revisions (COREV) into five modules for each of the five remaining weeks before finals. Then I began to rebuild course content into the COREV modules to be posted at the beginning of each week, with assignments due by the end of the week. Each day I would be “present” and available in our Canvas Course site during our usual class times, posting announcements with assignments due, PGH 200 relevant news, discussion, and encouragement. 

The first COREV module wrapped up unfinished business. World Speech Day and Wellness Fair being cancelled, students nevertheless wrote reflections on the preparatory work they had done and lessons learned, while I scrambled to revise and prepare materials for the remaining COREV modules. Modules Two and Four were abbreviated environmental health and global syndemic units. This allowed me time to research and synthesize the constantly evolving personal, public, and global health information on COVID-19 for Module Three, informing us all of the etiology of zoonotic viruses and the pathophysiology and epidemiology of COVID-19.

Module Five revised the Capstone-Personal Action Plan assignment from group to individual proposals. Each student would identify a people, place, and problem affected by COVID-19. Challenged to think how one person can make a difference, they explored resources for translating knowledge to action by addressing relief, rehabilitation, or development to respond to this pandemic, repair the damage it has caused, or prepare for future pandemics. 

Even before the death of George Floyd ignited long-smoldering racial tensions, students were seeing that underlying social inequities have made too many people vulnerable to the damaging impacts of this pandemic. Moving forward, as one student said, “Every student will remember this time in their lives, and I believe you can draw on everyone’s unique experiences to learn about preparing for the next pandemic.” What we all must learn from COVID-19 will inform every course I teach in the future, hopefully preparing future leaders in my classes—nurturing relevance and understanding, and empowering action and change derived from knowledge.

“If you have some power, then your job is to empower somebody else.”                         —Toni Morrison

References

 Global Health Conference Midwest. ( 2020). Retrieved from http://www.ghcmidwest.org/ 

Jacobsen, K. (2019). Introduction to Global Health (3rd ed.). Burlington, MA: Jones & Bartlett Learning.

Johns Hopkins University & Medicine – Corona Virus Resource Center.  COVID-19 map. (2020). Retrieved from https://coronavirus.jhu.edu/map.html 

Kidder, T. (2003). Mountains beyond mountains: The quest of Dr. Paul Farmer, a man who would cure the world.  New York, NY: Random House. 

Shereen, M. A., Khan, S.  Kazmi, Bashir, A. N., & Siddique, R. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research, 24, 91–98. 

Swinburn, B. A., Kraak,V. I., Allender, S., Atkins, V. J., Baker, P. I., Bogard, J. R. . . .  Dietz, W. H. (2019). The global syndemic of obesity, undernutrition, and climate change: The Lancet Commission report. The Lancet Commissions, 39(10174), 791–846.  

Teaching Through COVID-19
Part II: Personal, Public, and Global Health:
Translating Knowledge to Action and Change

Barbara J. Engebretsen, Kelly Cech, Josephine Peitz, Edgar Muñoz, Tabitha Shonie

Wayne State College, Wayne, NE

“I can’t breathe.” In April 2020, this would have referred only to the acute respiratory distress of a COVID-19 patient. Now, perhaps forever, “I can’t breathe” has taken on a darker meaning in our country and around the world. These unprecedented times of both COVID-19 and the current racial tensions may seem unrelated on the surface, but seen through the lens of one of our classes, Introduction to Personal, Public, and Global Health (PGH 200), we are discovering how connected these two topics really are. After learning about the science and epidemiology of COVID-19, we were required to study a “people, place, and problem” affected by COVID-19. The current global conversation about systemic racism has opened our eyes to how racial and socioeconomic disparities contribute to how COVID-19 affects different communities. Our final projects asked us, “What can one person do?” Here we share what we have learned, with ideas for action and hopes for change.

Navajo Nation – Tabitha Shonie

“Dik’os Ntsaaigii,” is Navajo for “big cough.” This is what the Navajo Nation calls COVID-19. Helping our elders understand what is happening is a challenge because of cultural and language barriers. COVID-19 has affected the world, but the significance of its impact on a community I grew up in hits hard. Native Americans make up around 20% of the COVID-19 deaths in Arizona, but overall they are fewer than 5% of the population. In one of the most developed countries in the world, indigenous people live on reservations in underdeveloped conditions. Lacking basic resources makes it hard for people on the reservation to follow CDC Guidelines. About 10% of Navajo people live without electricity, and almost 40% have no running water. Even in official health data, Native Americans are labeled “other,” which basically means we are being eradicated from the records. 

We grow up hearing stories from our elders. They tell us we are water; that water is life. I want to address all of the problems facing the Navajo people, but I will focus on water with respect for the cultures, traditions, and struggles of our people. I will partner with the Navajo Relief Fund, a branch of the Partnership with Native Americans to raise money for providing water access. Because cultural understanding and trust are critical for reaching more people, Partnership with Native Americans encourages participation from Navajo volunteers, empowering and creating trust. Personally, studying COVID-19 in this class helped me to teach and support my family during these difficult times. 

Rural Nebraska Food Producers – Kelly Cech 

Rural Nebraska isn’t the most racially diverse region in America, and racism isn’t a topic that is openly discussed, carrying a stigma much like mental health does. The death of George Floyd and protests occurring across America [make] this a critical time to learn, educate, and change. It will take cooperation, just as responding to COVID-19 has required cooperation. My hometown revolves around agriculture, small businesses, and community support. Farmers and agricultural businesses are essential workers with increased risk for exposure to COVID-19. Not only that, but COVID-19 struck right during planting season. The market uncertainty, the impact on small business owners, and the normal stresses of planting season have combined to amplify mental health issues such as depression and anxiety, which, like racism, are not discussed. 

Concerns I addressed included increased risk of exposure to the virus, mental health issues, and the many high-risk elderly people in my community. Proposed solutions included making masks for essential workers, distributing hand sanitizer, and coordinating a food donation service through our local grocer. Because understanding is key to health, I planned to develop and distribute educational materials about mental health, and set up a buddy program to keep in touch with the elderly who were isolated at home. 

Essential Workers in Food Processing Plants – Edgar Muñoz

In April, my hometown of Sioux City, IA recorded the highest daily increase in COVID-19 cases in the US. While the nation was recommending physical distancing, Sioux City’s number one employer, Tyson Fresh Meats, remained open, even as cases continued to rise. Employees came to work even if they had symptoms of COVID-19, fearing they would lose their jobs. Many of these employees had no unemployment or sick leave benefits, making them vulnerable to employer demands and even abuses. Finally, community backlash forced Tyson to temporarily close for “deep cleaning.” But was this enough? 

Advocating for employee rights, I learned about ways to require employers to be more responsible for the health of their employees. Working with the Sioux City Community School District to provide meals for vulnerable families, I am also speaking out in support of hazard pay and benefits for essential workers. I will continue to advocate for hazard pay by attending meetings that discuss their health and welfare. Prior to COVID-19, I lacked an emotional connection with PGH 200 topics because I had never experienced them firsthand. The pandemic has made me see its impact on low-income families struggling to survive, children losing resources exclusively offered by public schools, and people mourning loved ones. It has inspired me to become more empathetic and aware when others worry about their health and wellbeing. 

Domestic and Intimate Partner Violence – Josephine Peitz

Victims of abuse are often invisible, but the current protests are forcing us to think about all invisible victims of abuse as well as racism. Recently someone tweeted “couldn’t be happier that I live in a small town in Nebraska,” as if small rural towns aren’t affected by racism or domestic abuse. This dismissal reveals a reality that perpetuates racist action and inaction. Racism begins as a “them/us” thinking when we need “us/we” thinking. Victims of domestic abuse are, likewise, often stereotyped as different than “us,” and thus easy to ignore. 

The lockdown from COVID-19 is possibly the worst situation imaginable for victims of domestic abuse. Being forced to stay home with their abusers, combined with the mental stress of lockdowns, unemployment, and fear, is having a synergistic effect on domestic abuse rates globally. One helpline source in England reported an increase of abuse calls by 49% three weeks after the lockdown began, and 150% increased website hits. Add to all this, slowed court proceedings, restricted health care access, and the closure of many domestic abuse shelters due to noncompliance with CDC guidelines; the conditions are perfect for abusers to further control their victims— physically, mentally, and financially. 

Working with grassroots resources, I proposed ways of securing emergency shelter for abuse victims with donors and local hotels, and of developing a “code word” system for victims to reach out to kind-hearted people via social media for crisis intervention.  

Concluding Thoughts

COVID-19 may have robbed us of time with friends, year-end closure, and graduation celebrations, but as one graduating student said, “COVID-19 has made this class the best learning opportunity of my college career. I have seen how personal, public, and global health becomes the focal point of everyone’s life. It has given me confidence to make a difference and know the importance of taking action in a crisis.”  

We believe our class has shown that we have the potential and passion to navigate forward—translating knowledge to action, with the hope that we can change for the better and be better prepared for the next pandemic. 

References 

Navajo Nation 

COVID-19 Across the Navajo Nation. (2020, April 6). Navajo Times.  Retrieved from https://navajotimes.com/coronavirus- updates/covid-19-across-the-navajo-nation/ 

Native Americans being left out of US coronavirus data. (2020, April 24).  The Guardian.  Retrieved from https://www.theguardian.com/us-news/2020/apr/24/us-native-americans-left-out-coronavirus- data 

Navajo Relief Fund. 2020. A program of partnership with Native Americans. Retrieved from http://www.nativepartnership.org/site/PageServer?pagename=nrf_index 

Rural Nebraska Food Producers

Eden, David. (2020, April 14). The unspoken COVID-19 toll on the elderly: Loneliness. ABC News. Retrieved from https://abcnews.go.com/Health/unspoken-covid-19-toll-elderly- loneliness/story?id=69958717    

Groskopf, J., McClure, G., Emanuel, L., & Jean, F. A. (2020, April 9). #socialdistancing: Create physical distance but stay in touch. University of Nebraska-Lincoln, Institute of Agriculture and Natural Resources, CROPWATCH. Retrieved from https://cropwatch.unl.edu/socialdistancing-physical-distance-but-stay-touch 

Food Processing Plants

After coronavirus outbreak, Tyson temporarily closes Nebraska beef plant for cleaning. (2020, April 30). NBC News. Retrieved from https://www.nbcnews.com/news/us-news/after-coronavirus-outbreak-tyson-temporarily- closes-nebraska-beef-plant-cleaning-n1196826 

Five ways to follow the coronavirus outbreak for any metro area in the U.S. (2020, June 11). The New York Times – The Upshot.  Retrieved from  https://www.nytimes.com/interactive/2020/04/23/upshot/five-ways-to-monitor-coronavirus-outbreak-us.html#next-hotspots 

Domestic Violence

Godin, Melissa.  (2020, March 18). As cities around the world go on lockdown, victims of domestic violence look for a way out. Time.  Retrieved from https://time.com/5803887/coronavirus-domestic-violence-victims/ 

Kottasova, I., & Di Donato, V. (2020, April 6). Women are using code words at pharmacies to escape domestic violence during lockdown. CNN. Retrieved from https://www.cnn.com/2020/04/02/europe/domestic-violence-coronavirus-lockdown-intl/index.html 

Teaching Geoscience Tools for
Addressing Societal Grand Challenges:
A Unique Study-Away Experience During COVID-19

Lisa Gilbert

Williams College, Williamstown, MA

Summary

During the COVID-19 switch to remote learning in the Spring 2020 semester, I used the final six weeks of my oceanography course to teach specific topics and skills that would support students’ ability to address complex, relevant problems. Students evaluated hazard and risk, worked with a variety of data, and learned the fundamentals of systems thinking. Much of the curricular material was based on published and peer-reviewed InTeGrate models, which were originally designed to be societally relevant.  I introduced many of the examples and case studies originally planned, related to hurricanes, oil spills, and climate. Although I did not teach public health, human biology, or other topics more closely related to the global pandemic, students reported that the course was exceptionally relevant. They had the opportunity to apply knowledge and skills learned, but not all chose to do so. Assignments were tailored to give students choice, and while some students had a great desire to process the health crisis, many had limited tolerance for discussions of COVID-19 and saw class as one of their only breaks from news and household discussions.

Background: A Unique Study-Away Experience

During Spring 2020, 18 undergraduate students enrolled in the study-away program Williams-Mystic, the ocean and coastal studies semester of Williams College and Mystic Seaport. Students concurrently enrolled in courses on marine policy, maritime history, literature of the sea, and marine science. For their marine science requirement, students had a choice of two intermediate-level lab courses: my Oceanographic Processes course (n=11) and Marine Ecology (n=7). The semester had eight weeks of intensive, in-person learning beginning in January. After a week of introductory class meetings, we went to sea together for a research/training cruise on a tall ship for 11 days. Then we had another month of face-to-face classes and regional field trips. Students were living in four historic houses in Mystic, CT until mid-March, when they were sent home for six weeks of remote learning because of COVID-19.  

Remote Learning Guiding Principles and Structure

In designing my remote learning materials and schedule, I applied two recommendations from colleagues who had taught online previously: be consistent and communicate more than you think you need to. I re-evaluated my course goals and selected activities that could help my students meet those goals in the new learning environment.  I revised my statement of inclusion and facilitated a discussion of expectations with students during our first class Zoom meeting—not only what I expected of them and their expectations of me, but also their expectations of each other. In addition to meeting with my students once a week on Zoom, I decided that I would record a short video each week introducing the week’s topic and post it on Sunday with the week’s assignments. The video was intended to express my enthusiasm and empathy and answer the questions: (1) why this topic? (2) what are the expected learning outcomes this week? 

Remote Learning Through COVID-19

I continued to teach oceanography and did not attempt to directly teach about COVID-19 in Spring 2020. However, I intentionally used the six weeks of remote learning to teach topics and skills that students could apply to complex societal problems. I prioritized activities that gave students opportunities to evaluate data, make predictions, practice science communication, and develop their systems thinking and modeling skills. Many of the activities I used during remote learning were adapted from previously published and peer-reviewed InTeGrate modules, which are available online for free (http://serc.carleton.edu/integrate). 

The first 2 weeks of remote learning were focused on hazard and risk. Before our first class Zoom meeting, students read a short New York Times article by Jared Diamond, “That Daily Shower Can Be a Killer” (https://www.nytimes.com/2013/01/29/science/jared-diamonds-guide-to-reducing-lifes-risks.html) and answered several questions meant to prepare them for discussion: (1) What resonates most with you about what the author has to say about risk, and (2) What do you disagree with, or have questions about? Most students connected the article to their own behaviors during COVID-19, and I was inspired to hear several of them describe the altruistic actions they were taking to reduce risks for others. I have taught this unit on hazard and risk for over a decade now, and it is typical for students to share personal stories from earthquakes, hurricanes, landslides, and automobile accidents. However, during Spring 2020, we were all experiencing drastic changes in our lives aimed at reducing risk, and the discussions we had about uncertainty in data—particularly in how to make decisions based on incomplete data—felt not just relevant, but urgent. 

In the final four weeks, we focused on systems thinking skills. We began with systems thinking terminology and diagrams. After that introduction, students worked with models of the climate system. I assigned students to create a systems diagram (and later a dynamic model) of their choosing.  Students made diagrams about the complexity of getting homework done at home while caring for others, about the factors contributing to and the effects of their lack of motivation, and about their decision-making process about whether or not to return to school in the fall. However, while some students had a great desire to process the health crisis, many had limited tolerance for discussions of COVID-19 and preferred to address other relevant issues such as how coastal tourism and fossil fuel emissions are related in a feedback loop, thinking ahead to when beaches are open again. By the fourth week of remote teaching, about one third of the class reported satisfaction with the balance of oceanography and COVID-19 discussions, one third was eager for even more opportunities to discuss COVID-19, and one third wanted less.  I tried to balance all those needs as best I could by providing many choices for assignments. 

By design, students at Williams-Mystic typically demonstrate interdisciplinary thinking and incorporate many academic disciplines into any class session. They learn about climate change science in the context of historic and on-going social injustice, climate policy, and climate fiction, and from the perspectives of many stakeholders. They also form a close-knit community from living and going to sea together.  This semester, however, I was witness to a more thorough integration of the close social and learning community than in nearly two decades of teaching here.  Students shared their motivations for reducing risk, showing exceptional altruism and empathy for their communities and for society, not in an office hour discussion over tea, but in the middle of a Zoom class discussion of data uncertainty. While I believe students’ relationships with each other were inevitably limited by being physically distant, as were mine with them, there were some moments when the social and academic synergies were intensified during class online because in the final six weeks of the semester, those hours together were all that we had.

Audio and Video Clips Provide Connections Between Authentic Voices, Social Justice, and Global Water Challenges

Laura Guertin, Penn State Brandywine

At my institution, we received notification in the middle of our spring break week – within a few days, we shift to synchronous, remote instruction for the next three weeks. I was teaching multiple sections of an introductory-level Earth science course for non-STEM majors titled Water: Science and Society. The course focuses on water behavior and occurrence, and water’s relevance to life, human activities, politics, and society. I had planned for the class to be outdoors for the second half of the semester, with students collaborating in the field to collect water samples and test water quality on a stream running through our campus. But knowing that my students would not have their own instrumentation at home to carry out measurements of dissolved oxygen, turbidity, or streamflow, I scheduled the next three weeks online to highlight case studies on water and connections to social justice.

To prepare for my classes to continue online, I immediately assigned students into teams of no more than five individuals. At the beginning of each week, students were required to listen to podcasts or to view videos that I provided in our course management system around a particular topic – one week it was the ongoing recovery of the lead-tainted water crisis in Flint, Michigan, another week it was Cape Town, South Africa approaching Day Zero of running out of water, and the final week focused on the Salton Sea in California as a source of public health problems. I decided to use audio and video for content delivery, as these multimedia tools would add an ‘authentic voice’ to the topics instead of having myself lecture on the subject. This approach is supported by West (2008), showing improved student understanding using authentic lived experiences recorded from those who were directly involved in an event or situation.

The student teams replied online asynchronously to discussion prompts relating to the content presented in these linked multimedia sources. For class sessions later in the week, instead of having the entire class meet at once online, I asked each team to meet with me for a 20-minute discussion. During our short group sessions, we dove deeper into these case studies, and students were encouraged to further share their thoughts, ask questions, and respond to each other.

Throughout those first three weeks online, students remarked how surprised they were to have never heard about these topics or the water challenges in these locations. They made and voiced observations on who in these communities were impacted based on ethnicity, socioeconomics, etc. And all of the students shared their voices. During the first half of the semester when we were still meeting on campus, I had students that never spoke in class. I would never single out and call on students to participate, respecting their preference to be an observer during my lectures and Q&A sessions. However, these 20-minute online discussions appeared to allow those quiet students feel comfortable enough to contribute to the conversations. I heard student voices that I had never heard before. These voices were confident, powerful, supportive, and collaborative with their teammates.

Individual students then shared with me that they continued to discuss these water issues with their families and friends. Several students said these case studies were topics of conversations when families would go for walks in their neighborhoods during the statewide closures to stop the spread of COVID-19. Some students told me our water topics were the foundation of discussions at the dinner table, as students were trying to distract their parents, even for a few moments, from the enormous pressures they were feeling and challenges they were facing.

My university sent notice that the remainder of the semester would continue online, which meant four more weeks of remote instruction. Pleased with the student engagement around these thematic topics connecting water and social justice, I continued with this course format of asynchronous online discussion board postings at the beginning of the week, and small group discussions towards the end of the week. During the week of Earth Day (April 22), we viewed videos from the first Earth Day celebration in 1970 in Philadelphia (the geographic region of my campus) and listened to a podcast on the history of Philadelphia’s water pollution problems and the city’s current green solutions. I tapped into documentaries available through the university library online database and on YouTube, as Sherer and Shea’s (2011) research shows that online video’s accessibility and currency allow instructors and students opportunities to contribute to course content while increasing student engagement in discussions and activities. Certainly, the video documentary RiverBlue (2017) which explores the impact of toxic chemical waste from the global fashion industry on rivers as well as provides greener solutions, was a memorable topic for students that several folded into their essays for the take-home final exam.

Although I saw many faculty at other institutions post on social media about the disconnect that took place between them and their students when we lost the in-person instruction on campus, I could not have been more surprised and pleased to witness how engaged my students became during this abrupt shift. I was especially concerned having the students learn about locations across the globe facing great environmental challenges that was impacting some members of society more than others, as we were all being challenged to adapt to living with and through a pandemic. It would be interesting to know if and how this time of COVID caused students to reflect and connect even more to issues relating to water access and inequities, and if those connections remain into the future.

References

Sherer, P., and Shea, T. (2011). Using online video to support student learning and engagement. College Teaching, 59(2): 56-59. https://doi.org/10.1080/87567555.2010.511313

West, J. (2008). Authentic Voices: Utilising Audio and Video within an Online Virtual Community. Social Work Education, 27(6): 665-670. https://doi-org.ezaccess.libraries.psu.edu/10.1080/02615470802201762

Williams, R., Mazzotta, L. (Producers), & Williams, R., McIvride, D. (Directors). (2017). Riverblue [Motion picture]. Canada: Paddle Productions and Side Street Post.

 

In Their Own Words: Students’ Reflections on Remote Science Education

Rebecca Hardesty and Melinda Owens
with Rachel Bennett, Maricruz Gonzalez-Ramirez, Andrew Hosogai, and Catherine Kuh

University of California San Diego, San Diego, CA

Introduction

We planned the spring term of 2020 to be the culmination of a year-long project investigating biology education, and a celebration of four undergraduate students analyzing it. However, the COVID-19 pandemic forced an abrupt change of plans. Not only did the students have to move away from campus and switch to remote learning, they had to complete their research projects without the in-person support of the research team. Because of their developing expertise in science education research, these students are uniquely positioned to provide insight on the impact of the pandemic on teaching and learning. This reflection is a collaboration between the four students and their supervisors that is based on the students’ written reflections on how the pandemic impacted their feelings about learning and theirvaluations of science.

About the Class

The four students enrolled in a Biology Education Research class to get course credit for their research as part of a large multi-campus project exploring teaching in STEM disciplines at the University of California. This course, like all UC San Diego courses in Spring, 2020 was conducted remotely. Part of the students’ work, which could not be done remotely, was to conduct classroom observations of introductory biology courses at UC San Diego and prepare audio data for analysis. The other half of their work was to conduct original analysis, with mentorship, on the data the research team collected. The four students and their supervisor met virtually each week to receive feedback and guidance on how they would present their research as a 10–15-minute academic talk. They also met several times with the faculty advisor for the course, who was also a member of the research team. 

Below are some of their reflections in their own words.

Valuing the Practical

“More than ever, I want to learn more practical science that is useful in everyday life.… Previously, my learning science was dependent on course readings and lectures. Now I am actively searching through the resources introduced to me through my science courses to try to make sense of a topic that is still developing. It is reminding me of why I was interested in science in the first place, as I am able to read what interests me, and skim over what does not” (Rachel Bennett, Research Assistant, Biological Sciences).

“This pandemic has really given me a lot of opportunities to work with the nuts and bolts of processing data, especially for scientific learning. I am enrolled in an upper division biology lab and since this lab is being conducted remotely, we are essentially just visualizing how we are going to be doing the experiments while focusing more on the data analysis. Since we are focused more on the data and not the actual lab techniques, I have learned a lot more about how to interpret data and how to rationalize specific findings. A bulk of our time has been directly analyzing past students’ data and formulating our controls for our experiments. If anything, I was just reminded that scientific learning is not just conducting experiments but poring over data” (Andrew Hosogai, Research Assistant, Biological Sciences).

Losing Community, Finding Resiliency

“It is unfortunate that I am not able to attend lectures physically, [or to have] a learning environment to communicate with peers and collaborate with them in a much more meaningful manner. This within itself creates a sense of community which is not easily attained through online learning in the comfort of one’s room. My overall learning experience during the pandemic has made me realize the resilience of science and the importance of it” (Maricruz Gonzalez-Ramirez, Research Assistant, Biological Sciences).

“It has made it a bit difficult to self-motivate to learn. Because classes are online, it’s in a way made many students including me feel like there are little to no consequences for skipping lectures or not putting more time into studying for exams… [But positively, my research project] has made me more interested in scientific research, and I now plan on attending an experimental psychology PhD program after my undergraduate degree. I was able to see the way scientific research works and [had] the opportunity to dive deeply into a topic I’m personally interested in” (Catherine Kuh, Research Assistant, Biological Sciences).

“Ever since the COVID-19 pandemic, the amount of human contact I’ve had has been limited to my family, which has really made me realize how much I’ve missed interacting with other people… On a more personal level, I genuinely feel amazed at how many instructors have managed to adapt to this situation rather quickly and are able to still give meaningful lectures.” (Andrew).

Belief in the Civic Value of Science

“I appreciate science for what it is, for what it can do, and for its limitations. It is more important than ever to recognize that science is a painstaking and time-consuming process. In fact, the value of science has only increased for me, as it becomes clearer every day what becomes of society when the world has incomplete understandings of a critical topic” (Rachel).

“I feel that my learning experiences during this pandemic have made me value science much more. Science is about breakthroughs—a mistake can lead to discovery and its purpose is to surpass and solve questions that are yet to be answered. Remote learning is different from what I was used to, but it has not hampered my beliefs in the value of science, rather, it has strengthened them” (Maricruz).

“I think many professors have taken the pandemic as an opportunity to educate their students on the nature of a virus and this virus specifically. If anything, this pandemic has shown me how important science is to public health, but how politicized and often neglected it is” (Catherine).

Final Thoughts

These students’ dual position as learners and researchers provides them special insight into the pandemic’s impact on science education. Their reflections remind us how crucial feelings of community are to undergraduates’ learning experiences and how this has been lost during the pandemic. However, students have found renewed commitment to the societal value of science and motivation to pursue it out of intrinsic interest.

The First-Year Student in the Distance Learning Environment:
Challenges and Opportunities

Reem Jaafar

LaGuardia Community College, City University of New York, Queens, NY

The COVID-19 pandemic created a crisis in different sectors of society. Suddenly we found ourselves at a unique and pivotal point in academic history. Uncertainty, compounded with the abrupt change to distance learning, created anxiety among faculty, students, and staff alike. Fear and uneasiness were particularly pronounced among students in their first semester. I teach at a Hispanic-serving institution in the heart of Queens, New York—the epicenter of the pandemic. Most of our students are the first in their family to attend college, and some of them do not have access to the robust support system at home that students at residential colleges may enjoy. 

 All incoming students are expected to take a First-Year Seminar (FYS) course. I teach the course for the Liberal Arts, Math, and Science majors. Our semester starts in early March and ends the first week of June. We transitioned to distance learning eight days after the start of the semester.  In an FYS course, we teach students the habits of mind of the major and the college. We also engage them in experiential science learning to boost retention and help them decide on a specific area of science to pursue. Their expectations and our plans got derailed early on. Although this class is not a hard-core science course, it exposes students to science topics, and helps them develop the habits of mind needed for college success. 

First, I must admit that I was worried about this class the most. How can I give students a “smooth” first-year experience? After all, our lives are now controlled by factors none of us have ever experienced. Second, I do not know them well enough to be able to identify potential areas of struggles. Do the students have internet access? Do they have devices? Which students will need the most scaffolding? How will I translate some of the experiential learning opportunities to the virtual environment? 

During the five-day instructional recess, I spent my time reaching out to students to make sure they had the technology available to attend classes, while at the same time rethinking the curriculum. Our college uses Blackboard and has a built-in platform (Blackboard Collaborate Ultra) to provide synchronous teaching. It became apparent that students in the FYS class were the ones who felt the most turbulence transitioning to the virtual environment. On the first day, attendance was around 60%. The Division of Students Affairs reached out to students who were missing and finally the class was running at 80% of its original enrollment. 

I was wrestling with issues of training, available resources, and ideas on best practices for engagement. In addition to meeting synchronously, I asked students to use a chat app on their phone. The goal was to create a community of peers where students could connect. They started using it to discuss questions and concerns. In retrospect, students appreciated this aspect of communication and their ability to stay in touch with me and their peers. Once students developed  a sense of the routine and adjusted to the technical aspect, I started thinking about the next challenge: as a strong advocate of civic engagement, how could I instill civic engagement in first-year students who have not yet had the opportunity to experience college life? 

Every semester, we introduce Environmental Issues in Urban Ecology as part of the course, in collaboration with colleagues in the Math and the Natural Science Department. In particular, we learn about different types of pollution, the Air Quality Index, and more generally we brainstorm and research the impact of pollution on the quality of life and our responsibility for saving the planet. 

I discussed my plans with my collaborators, and we decided to tackle the same topics in the virtual environment, and to collect data using online resources. I started the units by grouping students during the live sessions and assigning them a research question. This activity was possible in Blackboard Ultra by creating groups and allowing students to meet in separate virtual rooms. Then we regrouped and discussed some of the questions and expanded to talk about the impact of different pollutants on public health and the environment.  

In a face-to-face class, students used meters to collect data for the pollutants NO2, SO2, and ozone at various locations around the LaGuardia campus while accounting for traffic patterns.  In the virtual environment, we collected data on airnow.gov, and we studied the overall air quality around campus. We also looked at patterns over certain periods of time. Students were also required to compare the air quality around LaGuardia with another city nationwide and with a second city outside the United States. One of our core competencies is global learning, so it was important to tackle environmental problems from a global perspective. Students also read and analyzed articles to further the discussion on how human behavior has a global impact on the environment. 

The transition has been challenging for everyone and certainly for first-year students. We generally serve a non-traditional student body, and I was proud to witness the resiliency of my students. This pandemic has tested our ability to adapt to other learning environments. Keeping a civic engagement component alive is necessary if we want to provide students with the skills needed to succeed in an evolving workplace. 

Our students will eventually go into a specific math and science major, and the importance of preparing them for a world that requires critical thinking and careful analysis of claims cannot be overstated. I am grateful to have colleagues who see eye-to-eye on the need to keep experiential learning and civic engagement alive in these uncertain times. During my struggles, I reminded myself to continue living the college’s mission to “educate and graduate one of the most diverse student populations in the country to become critical thinkers and socially responsible citizens who help to shape a rapidly evolving society.” To continue moving forward, we must emerge from this crisis with our mission intact. 

An Innovation-Driven Approach to Virtual Learning:
Using the Foundry Model to Transition Online

Stephanie N. Jorgensen,  J. Robby Sanders, and Pedro E. Arce

College of Engineering, Tennessee Technological University, Cookeville, TN

Andrea Arce-Trigatti

College of Education, Tennessee Technological University, Cookeville, TN

As members of the Renaissance Foundry Research Group—an innovation-driven learning educational research initiative—our mission is to better understand and contribute to active learning strategies across disciplines. Our courses therefore leverage the Renaissance Foundry Model (i.e., the Foundry)—a pedagogical platform anchored in knowledge acquisition and knowledge transfer paradigms that guide students to work collaboratively and iteratively towards the creation of a prototype of innovative technology (PIT) that addresses a real-world challenge (Arce et al., 2015). We were accustomed to an interactive, face-to-face environment, but the onset of the COVID-19 crisis required that we quickly adapt our teaching to an online learning space that captured the rich experiences inherent in these Foundry-guided classes. The following offers lessons learned from faculty reflections regarding this transition as it pertains to engineering education. 

Lesson 1: Keep the Active Learning 

During the transition to online learning due to COVID-19, I attended an important training session featuring design thinking, in which I discovered that online learning did NOT mean sacrificing course content, but rather presenting that course content in various contexts. I began to interpret common online mechanisms (e.g., discussion boards, videos) as potential Foundry-guided activities that would offer students the active learning aspects important in their development of an understanding of complex concepts in chemical engineering. Particularly successful was the design of a discussion board as a knowledge transfer activity intended to allow students to interact with one another regarding the knowledge they gained about flow meters in the week’s knowledge acquisition module. In learning about the basic technical function of flow meters, students were introduced to various types of flow meters, each with multiple real-world functions. In the knowledge transfer activity, they were asked to research one type of flow meter that was presented in the knowledge acquisition module and post a 250-word statement regarding the application of that particular flow meter and how it functioned, utilizing the technical terms of that week’s module. Each student was required to comment on at least three other posts within the discussion board. Comments indicated that students learned much about the various functions and applications of flow meters and how they operated. One comment reported that the student enjoyed the discussion board assignment as it allowed for real-world connections to the technical content presented in the course. 

Lesson 2: Continuity Is Important 

During the COVID-19 crisis, our course Transfer Sciences II (focused on momentum transfer) in Chemical Engineering was moved to an online platform. A large portion of this course is dedicated to students’ team projects focused on identifying a challenge (related to the course content) that also shows social impact. This challenge needs to be resolved with the development of a PIT as suggested by the Foundry (Arce et al., 2015). The PIT in the on-campus version may include the manufacturing of an actual physical device by the team of students. As the identification of the challenge must be made by student teams, they need substantial coaching on the implementation of the Foundry, which is typically accomplished in weekly meetings. To facilitate the implementation of the online version, we transformed the PIT to the development of a proposal for such a physical device but maintained the coaching sessions via Zoom meetings, which were already scheduled in the on-campus version. Consistent with the on-campus class format, the student teams needed to present a poster (now electronic) detailing key aspects of the project, to be evaluated by a team of judges (now virtually). Feedback from students indicated that this transformed format was extremely effective for the successful completion of the projects. In fact, the success rate from the teams compared to the last on-campus version was similar or better. The lesson learned is that maintaining a structure very similar to that of the on-campus course by leveraging virtual meetings helps students to maintain continuity in their learning and success. 

Lesson 3: Working Together 

Given a focus in our classes on innovation-driven learning (including team-based identification of a challenge and the development of PITs that are responsive to the challenge), a difficulty encountered is in completing our aggressive agenda within the constraints of a 15-week semester; we want to ensure that students acquire course-related content knowledge while also improving skills that will enable them to transfer that knowledge to real-world problems. Then, suddenly, instead of the original plan, that agenda needed to be completed in ten weeks of in-class time and five weeks of “oh-my-goodness-how-are-we-going-to-do-this-through-online interaction” time. We often communicate to students that an effective way to solve complex problems is to work together and to be committed to moving forward together to remove obstacles. The Foundry-guided process for challenge resolution involves phases of knowledge acquisition and knowledge transfer with constant improvement. In wondering how we were going to complete the semester and/or respond to new challenges moving forward, we should not forget the lessons that we try to impart to our students. We must work together to meet challenges and be determined to see the process through regardless of the level of complexity. 

Concluding Thoughts 

The following reflection from one of our members provides insight into initial thoughts and concerns about the virtual learning transition brought on by COVID-19: “As a faculty member, I often thought that utilizing online platforms to administer course concepts meant sacrificing the active learning activities that cement students’ understanding of the concepts by having them practice those concepts in a physical example or activity.” However, as noted by our lessons learned from this transition, this is not the case, particularly if platforms like the Foundry are leveraged to help maintain the spirit of active learning in a virtual environment. Moreover, in times of turmoil, teaching can be a wonderful opportunity to model perseverance in learning for students. In our lessons learned, an emphasis is placed on being flexible and being supportive, but most importantly, on being there for the students. The end result can be contagious . . . in a good way.

References

Arce, P. E., Sanders, J. R., Arce-Trigatti, A., Loggins, L., Biernacki, J., Geist, M., . . . Wiant, K. (2015). The renaissance foundry: A powerful learning and thinking system to develop the 21st century engineer. Critical Conversations in Higher Education, 1(2), 176–202.

Creative Tension in Teaching through COVID-19

Bob Kao

Heritage University, Toppenish, WA

Abstract 

During the COVID-19 pandemic and the transition from in-person to virtual class and lab teaching, I share reflections on Parker Palmer’s concept of creative tension in teaching, and how it has shaped the validation of students’ voices during virtual community of scholars team presentations.  In addition, I reflect on and share how the lives of scientists connect with the career pathways of undergraduates.  Finally, I share how COVID-19 pandemic has shaped the concept of advocating for support of undergraduates during times of uncertainty.

As we live through the challenges of the COVID-19 pandemic and its impacts on teaching, I am reminded of the concept of creative tension in Parker Palmer’s The Courage to Teach: 

Teaching and learning require a higher degree of awareness than we ordinarily possess—and awareness is always heightened when we are caught in creative tension.  Paradox is another name for that tension, a way of holding opposites together that creates an electric charge that keeps us awake (Palmer, 2007, pp. 73–74).

As I reflect upon the transition from in-person to virtual classroom and lab teaching, I am reminded of one specific paradox outlined by Palmer: “The space should honor the ‘little’ stories of the students and the ‘big’ stories of the discipline and tradition” (Palmer, 2007, p. 74).

In what follows, I will share my experiences and reflections from the general biology and upper-level molecular cell biology course and lab during the past spring semester of 2020.  For instance, in planning for end-of-the-semester virtual community of scholars team presentations, I reflected back on what was done in previous semesters, and I integrated culturally responsive teaching and the validation of the voices in each team’s presentations (Gay, 2010; Bell & Bang, 2019; Cajete, 1999; Ross, 2016; Kao, 2018; Dewsbury& Brame, 2019; Tanner, 2013).  I was aware of changes needed to adapt from in-person delivery into a virtual classroom space.  During the virtual community of scholars presentations in general biology, our class utilized Padlet for comments and reflections after each presentation. Through moderating and deep listening, I would validate the team’s insights and share undergraduates’ future questions.  I both validated the voices of each team and linked them to the interconnectedness of health and the environment as concentric concept circles.

Another example includes reflective writing on the lives of scientists in molecular cell biology.  By applying the Scientist Spotlight approach (Schinske, Perkins, Snyder,  Wyer, 2016) in molecular cell biology, I explicitly connected Dr. Mina Bissell’s themes on how a “thinking outside the box” approach provided important insights into how microenvironment affects cell homeostasis and how changes in matrix proteins led to tumor cell growth (Bissell, 2016).  In general biology with cell physiology emphasis, I shared Corbin Schuster’s first-authored review paper on glial cell ecology (Schuster & Kao, 2020) and encouraged undergraduates to write an open-ended reflection in their team research proposal, dealing with the research questions they wish to pursue in the future in general biology course and lab settings.

At the start of each class we reflected on the interconnectedness between human health and our environment; I highlighted recent developments in COVID-19 research and discussed the molecular cell biology of how SARS-CoV-2 binds to Angiotensin Converting Enzyme 2 in type II alveolar epithelial cells as discussed in the peer-reviewed research paper by Hoffmann and colleagues (Hoffmann et al., 2020).  As I think about future semesters, I plan to engage future microbiology and general biology courses in a multidimensional learning context.  In microbiology courses at Heritage University, I plan to devote more attention to SARS-CoV-2 and why there is a spectrum of symptoms with COVID-19, as well as to the impact of the novel coronavirus on global health. 

As a teacher, mentor, and advocate, I reflect on sadness and gratitude— during the pandemic, I deeply miss in-person discussions and students’ team lab experiments, and at the same time I am thinking about opportunity: how can I help our undergraduates collect data and help them navigate the experimental design process and teach them how to analyze and evaluate data?  When I am reminded of gratitude, I think about the connectedness between mind, body, and spirit when it comes to teaching in the physical spaces of the class and lab, and I realize that the virtual class and lab are also sacred spaces for learning.

During the COVID-19 pandemic, I have also learned about advocating in each moment for our first-generation Latinx and Native American and non-traditional undergraduates (Kao, 2020).  Through each moment, I reflect back on heart-centered mindfulness, and through each moment, I then link these to both creative and reflective mindfulness to help maintain centeredness during a time of uncertainty.

In summary, as we navigate the current challenges during the COVID-19 pandemic, I am reminded of words from The Scalpel and the Silver Bear, the autobiography of the first Native American surgeon, Dr. Lori Arviso Alvord (Alvord and Cohen, 1999): 

With beauty before me, there may I walk.

With beauty behind me, there may I walk.

With beauty above me, there may I walk.

With beauty below me, there may I walk.

With beauty all around me, there may I walk.

In beauty it is finished.

Blessing Way

May peace and beauty surround us as we continue our advocacy and support of our undergraduates in their educational pathways and journeys.

References

Alvord, L. A., & Cohen Van Pelt, E.. (1999). The scalpel and the silver bear: The first Navajo woman surgeon combines western medicine and traditional healing. New York: Bantam Books. 

Bissell, M. J. (2016). Thinking in three dimensions: Discovering reciprocal signaling between the extracellular matrix and nucleus and the wisdom of microenvironment and tissue architecture. Molecular Biology of the Cell, 27, 3205–3209.

Bell, P., & Bang, M. (2019). Overview: How can we promote equity in science education? Teaching Tools for Science, Technology, Engineering and Math (STEM) Education. Retrieved from http://stemteachingtools.org/assets/landscapes/STEM-Teaching-Tool-15-Equity-Overview.pdf 

  Cajete, G. A. (1999). Ingniting the sparkle: An indigenous science education model. Skyand, NC: Kivai Press. 

Dewsbury, B. & Brame, C. J.  (2019). Inclusive teaching. CBE—Life Sciences Education 18(2), fe2. Retrieved from https://doi.org/10.1187/cbe.19-01-0021

Gay, G. (2010). Culturally responsive teaching: Theory, research, and practice. New York, NY: Teachers College Press.

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S.  Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280.  https://doi.org/10.1016/j.cell.2020.02.052  

 Kao, R. M. (2018 ). Helping students SOAR: Quizfolio tips to engage first-generation underrepresented minority undergraduates in scientific inquiry. The American Biology Teacher, 80(3), 228–234. Retrieved from https://www.robertkaoscied.com/2018/05/02/helping-students-soar/https://abt.ucpress.edu/content/80/3/228

Kao, R. M. (2020). Beyond the lab bench: Pathways in inclusion, equity, and diversity in biology education and social justice. Developmental Biology, 459(1), 49-51. Retrieved from https://doi.org/10.1016/j.ydbio.2019.10.017

Palmer, P.  J. (2007). The courage to teach: Exploring the inner landscape of a teacher’s life. San Francisco: Jossey-Bass.

Ross, K. A. (2016). Breakthrough strategies: Classroom-based practices to support New Majority college students. Cambridge, MA: Harvard Education Press.

Schinske, J. N., Perkins, H., Snyder, A., & Wyer, M. (2016). Scientist Spotlight homework assignments shift students’ stereotypes of scientists and enhance science identity in a diverse introductory science class. CBE—Life Sciences Education 15(3). Retrieved from https://doi.org/10.1187/cbe.16-01-0002

Schuster, C. J., & Kao, R. M.  (2020). Glial cell ecology in zebrafish development and regeneration. Heliyon 6(2). Retrieved from https://doi.org/10.1016/j.heliyon.2020.e03507 

Tanner, K. D. (2013). Structure matters: Twenty-one teaching strategies to promote student engagement and cultivate classroom equity. CBE—Life Sciences Education 12, 322–331. https://www.lifescied.org/doi/10.1187/cbe.13-06-0115  

“Let me introduce you to what is changing our world” 

Caleb Kersey

      Freed-Hardemann University, Henderson, TN

I teach several courses for biology majors, but I also teach a non-majors biology course called Principles of Biology. As those who have taught any general education class know, students often encounter difficulties in subject matters they perceive as irrelevant to their future occupations. Principles of Biology is full of students who begin the class struggling to find the relevancy of this class other than the fact that it fulfills a requirement. 

I am fortunate to have been introduced to SENCER in 2013, and my attendance at the SENCER Summer Institute’s annual meetings from 2014 to 2016 completely changed my approach in teaching not only Principles of Biology, but all of my classes. One of the many teaching tips and tools I became exposed to was the plethora of case studies available from the National Center for Case Study Teaching in Science (https://sciencecases.lib.buffalo.edu/). I started using case studies as a major part of my pedagogy for Principles of Biology. One particular case study I use is called “Decoding the Flu,” authored by Norris Armstrong of the University of Georgia. I use this case study to teach concepts related to DNA, RNA, transcription and translation, and their application to our understanding different flu viral strains. My Principles of Biology class was scheduled to do this case study, but COVID-19 had other plans. 

As our university grappled with decisions emerging from COVID-19, faculty were told we would have one more week before all in-class meetings would stop and the remainder of our semester would be taught online. We were advised to take a portion of our remaining meeting time to communicate to our students how the online transition would look, as well as the impact this change would have on the logistics of our planned class activities. I grappled with what I should spend my time on with my Principles of Biology class. Some students had already left the university. Some were not coming to class. I settled on my last meeting with Principles of Biology just being just an information session about future plans. I also knew that possibly at no other time in the history of these students’ academic careers would the importance of biology be as relevant as it was now, as the impact of COVID-19 was being felt in their lives and around the world. I wanted to talk to the students about COVID-19, what we knew about it, and emerging research questions. It occurred to me that for a non-majors class, a background on coronaviruses and specifically emerging research might be overwhelming for our last meeting time. I prepared a coronavirus presentation just in case, but I did not know whether I would use it.

I had just finished explaining the changes for the remainder of the semester of Principles of Biology. I got several questions about the changes. After answering those questions, I was through with what I had planned. I did not have a strong read on whether the students would be up for a COVID-19 talk. These are non-majors. They generally want to get out of class as soon as possible. I asked the class if there was anything else they wanted to talk about. It was in that moment that a student raised his hand and said, “Can we just talk about the coronavirus?” After calming my internal excitement, I asked the class as a whole for a show of hands of those that wanted to talk about COVID-19. Almost the entire class raised their hands. These are moments a teacher lives for!

I opened up a document with the published genome of COVID-19 (https://www.ncbi.nlm.nih.gov/nuccore/MN908947) and said, “Let me introduce you to what is changing our world.” We scrolled through the approximately 30,000 nucleotides of COVID-19’s genome. A look of wonder and amazement spread on many students’ faces. A question came. “How could something so small be causing something so big?” Many other questions came. I had modified Norris Armstrong’s Decoding the Flu case study and renamed it Decoding COVID-19. We talked about the history of coronaviruses, and how our understanding of the genetic differences of COVID-19 would be important in understanding how this novel coronavirus functions. I used this case study to help introduce concepts related to the structure of nucleotides, the difference between DNA and RNA, transcription, translation, and the importance of protein structure on function. Later in the semester, I spent more time with the Decoding COVID-19 case study, slowly explaining and elaborating on the biological concepts mentioned above. It was a perfect opportunity to link what was happening in the world to the basic scientific understanding of viruses and genetics. 

The last class meeting with my Principles of Biology class was a confirmation of what SENCER has been heralding since its creation. Teach through connection. My exposure to SENCER helped me be prepared to take advantage of the clear connection we all have with COVID-19. My plans are for all of my classes in the near future to be taught through application to COVID-19. I am thankful for what I’ve learned with SENCER, as it has positively impacted my teaching approach and helped me catalyze students’ curiosity about the living world.  

Chemistry Labs Without Access to Chemistry Laboratory Spaces

Eileen M. Kowalski

  U.S. Military Academy at West Point, West Point, NY 

Disclaimer

Information presented here is the opinion of the author and does not represent the opinion of the United States Military Academy at West Point, the U.S. Army, or the Department of Defense.

Introduction  

Chemistry laboratories inherently have risks. We wear safety glasses or goggles to protect our eyes from foreign objects. We have lab coats, gloves, and hoods to minimize our exposure to chemicals. The COVID-19 pandemic presented a new risk, and the mitigation was remote instruction over the internet. As my colleagues and I adapted our labs to online instruction, I found myself coming back to strategies to minimize safety hazards. Many experiments we typically do in our labs did not translate to an online activity, and I needed to coach myself into accepting that the alternate assignments we developed on the fly were the best we could do under the circumstances. I kept reminding myself that no lab was worth illness or injury, including potential COVID-19 outbreaks.

Our students left for spring break and did not return. Although this was disruptive and sudden, it had the advantage that all our students had completed about half of each course’s laboratories in person. Labs that were completed the week before spring break could be written up in lab reports, just as we would have done had our students returned to campus. For some of the remaining labs, we could rely on our students’ previous experience to interpret data we gave them for those labs. Our students would be able to practice analyzing data and preparing reports, perhaps individually rather than in lab groups, but operating instruments and hands-on experience would not be possible. 

Operating instruments and collecting data in lab is more than pushing the correct buttons in the correct sequence. Unexpected results in other people’s data have easy explanations—uncalibrated instruments, inferior instruments, poor techniques, or careless work. Students often believe that their data will perfectly match theoretical predictions, with no missing or extraneous information. This belief persists until students generate their own unexpected results. Developing good technique takes practice, and practice was limited this semester without access to laboratory spaces.

In addition to missed hands-on experience during remote learning, we also lost many mentorship opportunities during labs. Our school does not have teaching assistants. When our students are doing labs, faculty have two hours to interact with students, listen to them, and mentor them. Some of this mentorship is minor. When liquid will not flow out of a separatory funnel, we remind the students to remove the stopper. In other cases, we correct mistakes the students might not realize they are making, and we can prevent them from repeating the mistakes they made on their pre-lab assignment. Often my responses to their questions model scientific thinking or help them learn to reason through what they are doing in lab. Giving the students a data set and being available online did not authentically reproduce the typical mentorship experience of an in-person lab.

How the courses changed

Second-semester General Chemistry students do some skill-building labs, and then they use those skills in a research mini-project. Before our students left for spring break, they had completed the skill-building labs and developed their research hypotheses. Unfortunately, the students could not return to the lab to investigate their hypotheses. Instead their professors gave them data that the students used to write their reports. The opportunities for our students to follow their curiosity and to try, fail, and try again in the lab were lost this semester.

Organic Chemistry students were unable to do the four-step sulfa drug capstone synthesis (Coppock et al., 2017). Typically, the students develop their procedures from four provided journal articles. After discussing their synthesis strategy with their professor, students adjust their strategies as necessary and then conduct their synthesis over six two-hour lab periods. These six periods were replaced with learning to search SciFinder for molecular structures, developing at least one alternate synthesis strategy, and discussing the relative merits of each strategy. In their lab reports students recommended a synthesis strategy and analyzed data collected in previous years.

Introduction to Analytical Chemistry (“Quant”) students were unable to do their gas chromatography or fluorescence labs. They were also unable to do the individual lab practical at the end of the semester. The Quant professor replaced these experiences with chromatography and fluorescence data that the students used to individually write reports.

Second-semester seniors take a class called Advanced Chemistry Laboratory, in which they develop, plan, execute, and present results from four capstone projects. Planning the experiments, getting unexpected results, and conducting additional experiments are important aspects of this class. Before spring break, the students had completed two projects and begun data collection on a third. The professor for this class sent data files for the third project to the students. If students needed additional data points to round out their data sets, the professor collected data for them. The third project conducted remotely was fairly similar to what the students would have done had they returned to campus. For the fourth capstone project, hands-on data collection was not possible. Instead, students wrote individual term papers. Since individually authored student work is part of the documentation to maintain our American Chemical Society certification, the term papers will be helpful data points in our program assessment.

The Way Forward

For our students who have at least a year of school before graduation, we can use subsequent courses to remediate hands-on lab experiences. General Chemistry students who were unable to design experiments in their research mini-projects will have time to collect data, assess their results, and try again in Organic Chemistry and Advanced Chemistry Laboratory. Students who did not use the gas chromatographs in Quant will use them in Organic Chemistry and Instrumental Analysis. The interrelated nature of the five subdisciplines of Chemistry means that our courses are also interrelated, so that revisiting topics or instruments occurs naturally throughout the curriculum.

Some of the adaptations to our lab program may be used again in future in-person labs. For example, learning to search SciFinder using molecular structures and having our students write individual reports are adaptations that worked well. Other adaptations were disappointing. In each online lab our students learned valuable skills and got meaningful practice, but their experience was a faint echo of what they could have done in hands-on labs. Because our students come from all fifty of the United States and some of them live abroad, COVID-19 would have been among the infections that spread through our student body two weeks after spring break. Preventing a COVID-19 outbreak on our campus was definitely worth half a semester of improvised and modified laboratory experiences.

Acknowledgment

I thank Anita Gandolfo, Professor Emerita of English, for her careful reading and insightful feedback on this reflection.

Reference

Coppock, P., Park, S. H., Paredes, J., Pennington, R., Pursell, D. P., Rudd, G., Sloop, J. C., Tsoi, M. Y.  (2017). Enhancing research skills and attitudes in undergraduate organic chemistry with a Course-embedded Undergraduate Research Experience (CURE) via green organic synthesis.  Journal of Laboratory Chemical Education 5(3), 41–47.

Teaching Environmental Chemistry Through COVID

Stephen A. Mang

University of California Irvine, Irvine, CA

Like most universities in the United States, the University of California Irvine (UCI) delivered all classes remotely after the middle of March 2020. UCI uses the quarter system, so the entire Spring quarter was remote. This change presented a problem for senior chemistry majors who needed one more upper division laboratory class to graduate. Our department decided to offer a course in environmental chemistry that could be used to fulfill this requirement, since we could not offer labs. Thirty-four students enrolled in the course, some of whom were interested in environmental chemistry but most of whom just needed the class to graduate. I structured the class with two learning objectives: for students to learn about the chemistry of the environment and to apply that chemistry to real-world problems and advocate for solutions. Most will not become environmental chemists, but I hoped that they would be well prepared to discuss environmental issues with non-scientists.

I had two weeks from being assigned the course to the first day of Spring quarter. Some materials were provided by a colleague, but they had to be extensively supplemented to make the course suitable for remote delivery. I typically use an active learning style, which is hard to replicate in a remote course. Additionally, some students had moved to different time zones and even different countries, which meant that lectures had to be asynchronous if I did not want to ask some students to participate in course meetings at unreasonable hours. I incorporated synchronous discussion sections and Zoom office hours so that students could interact with instructors.

I organized the course into modules in the Canvas learning management system. The course began with two-week modules on the chemistry of air, water, and soil, followed by one-week modules on radioactivity and agriculture, and finally a 1.5-week module on geochemistry and fossil fuels.  To adapt the modules for remote learning, I posted lecture slides and pre-recorded videos at the beginning of each week. In lieu of in-class activities, the students completed short reading quizzes on each scheduled lecture day. I used Canvas discussion boards for each module to replace an in-class participation grade. To promote civic engagement, I expanded assignments from the previous instructor who had required students to write Tweets occasionally; every module had at least one assignment where students either composed a Tweet based on a relevant article, or found someone else’s relevant Tweet.

The first module (air) offered several opportunities to discuss civic engagement by scientists. In addition to the basics of atmospheric chemistry and the kinetics of atmospheric reactions, we looked at successful environmental regulations such as the Clean Air Act and the Montreal Protocol. We also discussed Sherwood Rowland, a founding member of the UCI chemistry department who won the Nobel Prize in Chemistry for discovering the mechanism of stratospheric ozone destruction by chlorofluorocarbons (CFCs) and whose work led to a successful global effort to limit CFC emissions. The COVID pandemic response in Orange County, where UCI is located, provided a useful context for thinking about these topics, as there was significant local resistance to science-informed public health interventions like mask-wearing and restaurant shutdowns (Fry, 2020). 

The pandemic also provided a real-world example when we covered photochemical smog. UCI is located in the South Coast Air Basin (SoCAB), which has all of the conditions (NOx and volatile organics from vehicle emissions, sunlight, geography that minimizes air transport) for photochemical smog formation (Finlayson-Pitts & Pitts, 1999). Air quality in the SoCAB was much better than usual in late March and early April when fewer cars were on the road (McNeill, 2020). Combined, these two months had 14 days where the Air Quality Index (AQI) was under 25 for ozone and 17 days where the AQI was under 25 for fine particulate matter (PM2.5). In comparison, 2019 had only eight such days for each pollutant and 2018 had nine low-ozone days and three low-PM2.5 days in the same two months (AQICN, 2020). Satellite measurements, popular science articles, and pictures on social media confirmed that air in the SoCAB was much cleaner than usual, and that global emissions of NO2 were lower than normal owing to factory shutdowns and reduced vehicle traffic (Wang & Su, 2020). 

The last module of the class was supposed to cover the climate impacts of emissions from fossil fuels and strategies for mitigating those emissions. These topics provide extensive opportunities to discuss civic engagement by scientists, given their importance and the stark difference between the near-unanimity of scientists and the division among politicians and the public. The module was supposed to begin on May 28th. George Floyd had been killed in Minneapolis on May 25th, and by May 27th protests were widespread, including large demonstrations in nearby Los Angeles (Taylor, 2020). Under the circumstances, teaching students about the future consequences of carbon emissions, a topic that can be overwhelming for undergraduates, seemed insensitive (Kelly, 2017). Instead, I posted content for the last 1.5 weeks of the class but made all assignments optional, with no excuses necessary. 

This was a missed opportunity. Considering the theme of racial injustice behind the protests, ideally, I would have adjusted quickly enough to talk about the numerous racial justice issues involved in the climate crisis (Emrich & Cutter, 2011; Hauer, Saunders, & Shtob, 2020; McKibben, 2020). Courses in environmental chemistry, atmospheric chemistry, or other topics related to climate change in Fall 2020 should address the climate justice movement and incorporate material related to the COVID pandemic. Educating students about the consequences of climate change and public health emergencies necessarily involves discussion of the outsized impact of those consequences on minority communities. This is also the case when discussing pollution and other topics at the intersection of environmental chemistry and policy. Social justice issues are often overlooked in STEM education (Madden, Wong, Vera Cruz, Olle, & Barnett, 2017), but the current historical moment gives us the opportunity to present a fuller picture of the effects of pollution and climate change and to prepare our students for informed civic engagement.

References

AQICN. (2020). Los Angeles-North Main Street air pollution: Real-time Air Quality Index (AQI). Retrieved from https://aqicn.org/city/losangeles/los-angeles-north-main-street/ 

Emrich, C. T., & Cutter, S.L. (2011). Social vulnerability to climate-sensitive hazards in the southern United States. Weather, Climate, and Society, 3(3), 193–208. doi:10.1175/2011WCAS1092.1

Finlayson-Pitts, B. J., & Pitts, J. (1999). Chemistry of the upper and lower atmosphere (1st ed.). Cambridge, MA: Academic Press.

Fry, H. (2020, May 8). An Orange County cafe opened in defiance of Newsom. Now it’s the center of stay-at-home resistance. Los Angeles Times. Retrieved from https://www.latimes.com/california/story/2020-05-08/coronavirus-orange-county-cafe-resistance-stay-at-home-newsom 

Hauer, M., Saunders, R. K., & Shtob, D. (2020). The path of least resistance: Projections of social inequalities as a result of climate change in the United States. SocArXiv. doi:10.31235/osf.io/7jtrn.

Kelly, A. (2017). Eco-anxiety at university: Student experiences and academic perspectives on cultivating healthy emotional responses to the climate crisis. Independent Study Project (ISP) Collection, 2642. https://digitalcollections.sit.edu/isp_collection/2642

Madden, P. E., Wong, C., Vera Cruz, A. C., Olle, C. D., & Barnett, M. (2017). Social justice driven STEM learning (STEMJ): A curricular framework for teaching STEM in a social justice driven, urban, college access program. Catalyst: A Social Justice Forum, 7(1), 24–37.

McKibben, B. (2020, June 4). Racism, police violence, and the climate are not separate issues. The New Yorker. Retrieved from https://www.newyorker.com/news/annals-of-a-warming-planet/racism-police-violence-and-the-climate-are-not-separate-issues 

McNeill, V. F. (2020). COVID-19 and the air we breathe. ACS Earth and Space Chemistry, 4(5), 675–675. doi:10.1021/acsearthspacechem.0c00093

Taylor, D. B. (2020, June 12). George Floyd protests: A timeline. The New York Times. Retrieved from https://www.nytimes.com/article/george-floyd-protests-timeline.html 

Wang, Q., & Su, M. (2020). A preliminary assessment of the impact of COVID-19 on environment – A case study of China. Science of the Total Environment, 728. doi:10.1016/j.scitotenv.2020.138915

College Teaching During the COVID-19 Pandemic

Janet Michello

LaGuardia Community College, City University of New  York, Long Island City, NY

It seemed like COVID-19 came out of nowhere. One day college professors like myself were immersed in their usual teaching activities, and then in what seemed like a movie on fast-forward, we were home struggling with having to teach all courses remotely. It didn’t matter whether students and professors were prepared for such a quick pedagogical about-face.  

A new vocabulary quickly emerged. Words like “Zoom,” “Blackboard Collaborate,” asynchronous versus synchronous, etc. became part of our conversations with colleagues and students. Those of us who had at least some experience teaching hybrid and online courses began to assist professors with limited or no experience teaching remotely. Panic could be heard in their voices as they asked numerous questions about how to even begin teaching in a format alien to them. As the weeks passed, questions became less frequent and a degree of technological competence began to emerge. There seemed to be a “light at the end of the tunnel,” but the gravity of the situation for many students was not yet clear to us.

And then the emails came.  In what felt like a rapidly approaching avalanche, students began questioning just about everything—readings, assignments, quizzes, exams, papers, due dates, and more. Even though explicit instructions were given, students sent multiple and repetitive queries about important and mundane matters with an equal sense of urgency. As students struggled with their new reality, the confinement of the governor’s stay-at-home orders began to take its toll. Students living in New York City frequently share small apartments or live with multiple family members. Little by little, students began announcing that they were ill. As one person became infected with the coronavirus, others in their same living quarters became infected too. One young international student was hospitalized for nearly a month, and although he physically recovered, he remained emotionally drained and never completed the course despite the extra time and support given. As I submitted his grade of F, I wished there were a special designation allowed so he wouldn’t suffer the consequences of a failing grade. At the CUNY school where I teach, during the pandemic students were given the option of receiving a letter grade or a Pass/Fail grade; however, you need to successfully pass the course regardless of your selection. Another student sent emails telling me she was sick and didn’t know what to do or where to go to get tested for COVID-19. I directed her to what I thought was the appropriate resource, but later that week she informed me that she was unable to get tested. When I asked her why she was denied testing, she replied that she was told to contact her family physician. Since the majority of students in the college where I teach are low-income, many do not have the luxury of having a family physician or even medical insurance. Fortunately, in the weeks that followed this situation changed since free testing sites opened for people with symptoms.

As revealed in the media during the coronavirus pandemic, lower-income people throughout the country were disproportionately affected, with the majority of them being people of color. Like the student described above, many have neither adequate access to medical care nor violation-free apartments. Both public and private housing in lower-income neighborhoods in New York City are riddled with housing violations such as holes in walls and ceilings, falling plaster, peeling paint, rodents, roaches, and lack of heat and hot water. How can you sing Happy Birthday twice while washing your hands with soap as recommended by the CDC when you don’t have hot water?Early on in the pandemic New York City had a higher number of COVID-19 cases than any other city in the nation. Hospitals could not accommodate all the infected residents, and personal protective equipment was in short supply. This situation eventually improved, but the dire consequences remained. People died at an alarming rate, including students and family and friends of students. One thirty-one-year-old student living in the Bronx entered a hospital because of the severity of his symptoms and within two days he was dead. Situations like this occurred over and over again. As caring professors, we found ourselves being more than just educators. Our enhanced roles provided additional support and flexibility for our students, including guidance for emerging issues. A problem that affected many students was lack of computers. Since everyone in a household now needed to use the one family computer, this became a major problem. Other students relied on computers at school, which were not available now that schools were closed.  We were fortunate to be able to refer students to the pick-up locations of computers CUNY provided for students in need. Another problem, however, was lack of reliable internet connections.

In summary, in my three decades of college teaching, this past semester, Spring 2020, has been the most difficult. It isn’t because of the additional responsibilities I had because of the COVID-19 pandemic; it was dealing with the hardships so many students faced. At times it was overwhelming, knowing there were multiple deaths in one family or reading about how sick students were. It was also realizing how few safety nets our students have and anticipating what the near future will bring. So many students and their parents lost their jobs. There is currently a moratorium on evictions but what will happen when it expires?  Will we see more students and their families living in homeless shelters?  This pandemic illuminated the economic, health, and quality of life disparities that have existed for too long in the United States of America. As a collective, we as college professors need to do more. We have the responsibility to devote more of our energies to the call for greater equity for all our students.

Informal STEM Education and Evaluation in the Time of COVID-19

Scott Randol and Chris Cardiel

Oregon Museum of Science and Industry, Portland, OR

Contributors (in alphabetical order):

Julie Allen, Marcie Benne, Patricia Brooke, Vicki Coats,  Kim Deras, Annie Douglass,
Imme Hüttmann, Alison Lowrie, Verónika Núñez

The Oregon Museum of Science and Industry (OMSI) is a national education leader in science, technology, engineering, and math (STEM). OMSI’s mission is to inspire curiosity by creating engaging experiences for learners of all ages and backgrounds, foster experimentation and the exchange of ideas, and help people make informed choices. As an informal STEM education institution (ISEI), OMSI contributes to education locally and nationally through exhibits, programs, and education research and evaluation. Traditionally, this work involves direct input from learners and community partners into the development of educational experiences; however, the COVID-19 pandemic has necessitated new and innovative ways of supporting our civic and educational missions while respecting public health and social distancing guidelines. In this reflection, we describe how two ISEI projects funded by the National Science Foundation have changed practices in response to the pandemic, highlighting successes, addressing challenges, and sharing lessons learned through these efforts.

Snow: Museum Exhibit, Educational Outreach, and Learning Research is a collaboration between OMSI, the University of Alaska Fairbanks, and the Center for Research and Evaluation at COSI (Center of Science and Industry, Columbus, Ohio), and includes research, outreach programming, and development of a traveling exhibition. Prior to the COVID-19 pandemic, the project team was preparing for the construction of exhibit prototypes for visitors to evaluate; however, the pandemic rendered standard formative approaches impossible. Rather than simply delay project activities, project leaders strove to keep things moving, even with no direct access to visitors and with most staff working from home.

One example of the pivots made by the team involved a collaborative brainstorming activity that would typically have been conducted in a large-group workshop. Instead, the team implemented a process for using Google Slides, where individuals added their sketches, pictures, and ideas to a shared online slide deck; the consensus was that this approach was highly successful and did not sacrifice the creativity of in-person brainstorming. A second modification made to the project’s approach related to the evaluation of exhibit prototypes with museum visitors. For one particular prototype, the final exhibit will feature a large screen displaying an animation of falling snow that will zoom in and provide additional scientific information as visitors approach. While the team could not test the physical prototype, they determined that families could evaluate the animation virtually, and they quickly crafted an evaluation study including a survey and Zoom interviews, both of which allowed participants to comment on the animation and related educational content.

The COVID-19 pandemic forced the Snow team to adopt new strategies for engaging with other staff and community members. While there were costs, including the loss of some of the depth and breadth that could be expected during a typical formative evaluation study, these experiences have illustrated benefits that the team hopes to maintain even after the pandemic. Specifically, these tools provide direction on educational experience development and show potential for attracting public audiences that have been historically underrepresented in OMSI’s learning activities.

A second example is a family-focused STEM education program that engages educators, caregivers, and young children in an integrated set of experiences to foster interest in engineering design processes. Integral to the program are educator professional development and family take-home activity kits. In early spring 2020, the project team was preparing to deliver professional development workshops for educators and was planning to have families evaluate the hands-on activity kits through home visits and family nights at OMSI. It quickly became clear that, due to the COVID-19 pandemic, these activities could not proceed as planned. Online platforms such as Zoom made conducting professional development activities via teleconference a straightforward adjustment; however, more creative approaches were required to ensure families continued to influence the evaluation and development of the activity kits.

Traditionally, project staff would walk through activities with families gathered at OMSI or by taking activity kits, including necessary materials, to the participating families’ homes. Educators would provide support and instructions for the activity while gathering input about how well the activities were working and what families thought of them. Without opportunity for live interaction, the team switched to creating instructional videos and sharing them through Class Dojo, an educational communication application that can translate content into 36 languages. Feedback on the activities is being gathered through a hyperlink included at the end of each video and through teachers involved in the program. The instructional videos solved the issue of how to explain the activities, but they introduced two additional challenges: materials and technology. Using materials that are familiar and readily available to families, though already a consideration when developing the kits, quickly became a necessity. Since kits could not be taken to families, the materials required for the activities needed to be things that families would have on hand. Additionally, the team needed to ensure that families had access to the technology required to view the videos; fortunately, the program was able to provide tablets/laptops to families who did not otherwise have access.

While the team missed the human connection with each other and with participating families, the crisis provided an opportunity to experiment with new approaches. Switching to more ”everyday” materials in the kits allowed the families to explore the extent to which novel items contributed to the activities’ success. Creating video lessons provided a long-lasting resource, while the team became more familiar with Class Dojo and gained skills in the production and use of instructional videos.

Quick and creative adjustments along with the leveraging of technology allowed the project teams to continue to progress with minimal disruption. Common in both examples was the implementation of new digital engagement strategies, both internally and with the public. While time-consuming to set up and implement, these strategies broadened the teams’ skills and toolkits and ensured that experiences were collaboratively developed. In many ways these innovations brought people closer together through recognition that everyone was trying to do new and difficult things. Most importantly, the efforts sustained learners’ participation and influence on the development of educational experiences that will benefit them and their communities.

Screenshot from the instructional video showing families how to use engineering activity kits.
Welcome page for the online evaluation of the Falling Snow interactive.

Distance Makes the Math Grow Stronger

Melanie Pivarski

Roosevelt University, Chicago, IL

It’s funny how sometimes adding a bit of chaos to life can help one to focus.  

Since 2015, Roosevelt University has taught a mathematics course where we partner with outside groups to analyze a mathematical problem of theirs.  This class was originally developed with support from the Mathematical Association of America’s PIC Math program (Preparation for Industrial Careers in Mathematical Sciences) (https://www.maa.org/programs-and-communities/professional-development/pic-math). At the start of the semester, one of our partners meets with the class to describe the setup of the problem.  The students work throughout the term, and at the end of the semester the class presents their work as either a poster or a talk at our university’s research day.  Over time, we’ve had groups of students working on data on the spread of Ebola, on the University’s energy use, and with biologists from the Field Museum of Chicago on their Microplants project.  

The most fruitful partnership has been the one on the Microplants project, with Dr. Matt von Konrat from the Field Museum and Dr. Tom Campbell from Northeastern Illinois University.  In this community science project, individuals measure the length and width of images of microscopic leaves, either at a kiosk in the museum or through a web portal.  This has led to datasets from the touchscreen kiosk and from the Zooniverse website (http://microplants.zooniverse.org), as well as a file of demographic information on patrons using the kiosk. Each year students have looked at different aspects of the data, including kiosk usage, demographics, and accuracy (von Konrat et al., 2018). Due to the large quantity of data that have been collected over time and to the formatting of the data files, this has turned into a data science project in the past three years, with a lot of time devoted to data cleaning, processing, and formatting.

This spring, my class studied how to link the demographic file to the main kiosk data file, with a goal of seeing how age influenced the measurements.  Were children better at this or were adults?  I structured the class so that students would work in small groups on various aspects of the problem during class time, and I would wander about the room working with each group individually. We made good progress, and the data were aligned and in a manageable form more quickly than ever before.  We drafted a talk on our preliminary work and planned to give it at our regional MAA meeting in mid-March. We made plans for a field trip to the Field Museum, where we could see the kiosk in person.  We were excited by the many different possibilities in store for us!

We left for spring break. The MAA meeting and the Field trip were canceled and spring break was extended a week.  The planning committee  for our university research day had to rework the conference into an online format.  I had to look at what we had accomplished as well as what we could do in a shorter semester.  And, of course, as humans we all had to deal with the entirety of our reality; this wasn’t just a change in our university lives, but rather a change in our whole lives.  My students had many challenges to deal with; some had jobs whose schedules shifted due to the pandemic.  Others had to share devices and bandwidth with their household.  Others were still living in the dorms, but without the social connections of early March.  With my husband’s time filled by an emergency ventilator design project, I had to guide my first grader’s study times as well as provide a social life for her.  (She, too, adapted by deciding to marry our cat.  It was a beautiful ceremony.)  

With an overabundance of things to do, it was necessary for me to focus.  But it was also essential to make sure that everyone was doing all right.  I emailed my class to make sure that they could all use Zoom, and I set up a recurring meeting during our regularly scheduled class times.  I told them that since the class was a simulation of what a data science job would be like, this transition to working from home was telecommuting.  I assured them that I understood that they might need to miss class for a variety of reasons, such as work, illness, or family, and that this was perfectly fine; they just needed to email me when they were able to let me know.  I told them that they had been doing great work so far, and that with everything that was going on I wasn’t worried about how far we would get on this project.  Everyone would get a good grade as long as they continued to participate.  We wouldn’t worry about a final exam.  We would just do our best and see what we could do.  

With the data in a good format, I split the class into groups of two or three, each responsible for one particular leaf image and its associated data.  I had all of the groups do the same statistical analyses in parallel on Excel.  This allowed me to run my Zoom meetings by starting with a short lecture, a demo of what they were to look at, and then I would split them into five breakout rooms to work together.  I recorded the demo and typed out a summary after each class for people who had a schedule conflict.  But to my delight, my students really stepped up their game!  The quality of their work improved, attendance was great, and we made more progress than in the past semesters.  Our biologist partners, freed from their ordinary schedules, joined some of our Zoom meetings. We ended the semester with a draft of a paper, which we’re completing this summer.  Rather than a pandemic pandemonium, we ended up with a CO    convergence.

Reference

 von Konrat, M., Campbell, T., Carter, B., Greif, M., Bryson, M., Larraín, J., Trouille, L., Smith, A. (et al. 2018).  Using citizen science to bridge taxonomic discovery with education and outreach. Applications in Plant Sciences 6( 2):, e1023.

A Light at the End of the Tunnel 

Ginger Reasonover

Lipscomb Academy, Nashville, TN

On the Wednesday before spring break, we found out that our students were being given the Friday before break as well.  But not teachers!  Due to the impending COVID-19 pandemic that nobody could have predicted, teachers were required to come to school to learn about virtual learning.  After a day of what-ifs and maybes, teachers took enough materials home to plan for a possible extension of spring break.  One, maybe two weeks, at most. We settled in thinking, “We can do anything for a couple of weeks.” 

Unfortunately, the pandemic worsened. Two weeks became four, four became six, six became nine. 

Clearly, the words Virtual School can instill panic in the hearts and minds of most elementary school teachers. We miss the daily interaction with our students—hugs, smiles, conversations—but we also miss the interaction with our co-workers.  As a hands-on science teacher, being told I had to teach online sent shivers down my spine. Our learning train had been derailed and it was up to me, the teacher, to get it back on the tracks!  All my carefully orchestrated lesson plans now seemed useless.  

I teach at a school where access to technology is not a problem for most students. Having access and having it work, however, are two different things.  Teachers dealt with problems that arose from different learning platforms, device incompatibility, and additional obstacles; all had to be addressed before teaching could begin. Of course, some students enjoy school more than the actual learning and completion of assignments.  When physically at the school building, surrounded by friends and teachers, many students subconsciously rely on peer support and pressure to accomplish required assignments. Once students had to control their learning through a computer, they missed school structure, and a few late-night phone calls and emails with concerned parents ensued. Difficulties were compounded for parents working from home. Having children in varying grades all vying for the computer while parents were trying to work was, at best, complicated, and definitely an exercise in patience for all concerned!

As for class content, considerable changes were made, as well as to delivery of said content.  I put the “hands” in hands-on science! I knew students were not likely to have beakers, electricity kits, and chemicals at home, but I quickly learned that access to even the most basic materials might be problematic. Suddenly, I had to adapt not only my scope and sequence but also materials used in the labs themselves. 

For example, to study the concept of sound with students, I first shared a video about transverse and longitudinal waves. What is the easiest way to demonstrate waves? Slinkys™ and jump ropes, of course!  As a kid raised in the 60s, I played with Slinkys™ and jump ropes frequently. To my dismay, none of my students had a Slinky™, and most did not even have a jump rope.  Had we been at school, this would not have been a problem—open the cabinet, and voilà!—there were the Slinkys™ and jump ropes.  Teaching online sent me back to the drawing board. I found several simulations focusing on sound waves and even a few using echolocation (which we had studied earlier in a discussion of animals). I even traveled outside to film a video on sound mapping, posting it as an example for my students to use when recording their own sound mapping video. Using a piece of string and spoons to demonstrate sound vibrations, students listened to different sounds produced by changing the type of string they used.  

Easy body movements helped students model wavelength, amplitude, crest, and trough. Incorporating literature, students listened to the book, The Remarkable Farkle McBride by John Lithgow (2000), and discussed different instruments.

 Online quizzes and written assignments were required throughout the course. At the end of our study, students made homemade instruments from recyclable materials. They explained what type of instrument it was (percussion, woodwind, or string) and made a recording of themselves playing the instrument with at least two different pitches. Of course, drums and glasses filled with water were common, but some instruments stood out from the rest. One student worked with her grandfather to make a wooden “tuneboard.” They sanded down the wood, drilled holes, added strings, and produced a beautiful instrument.  Another student made a chipendani, a copy of an instrument from Zimbabwe, his family’s native home.

Continuing through the semester, teaching became easier as I became more adept at changing materials required for lessons.  When studying communication, I again relied on an online video and wrote an article to introduce concepts. We then talked about Morse code, and students decoded a message I sent to them.  With our study of binary coding, students were assigned a message and asked to make a model using Cheerios™ (to represent 0’s) and pretzel sticks (to represent 1’s). Some students were highly creative in finding substitutions for Cheerios™ and pretzel sticks!

My journey into virtual learning was not one I will soon forget, nor one I look forward to repeating, although I’m certain we will. However, there were bright spots. I acquired new computer skills and am now hosting ZOOM™ meetings, recording videos, and using Flipgrid™ and Google Classroom™. Another benefit I experienced was growing closer to my students when working through the trial and error of computer learning.  I have also expanded my “bag of tricks” and have gained some wonderful insights into my students’ minds.  So, while virtual school was not perfect, or even desirable at times, there are numerous ideas I will include in my lesson plans for next year because they added value to the educational process. I don’t know what the future holds in regard to the pandemic or what our school year will look like in the fall, but I can now see the light at the end of the tunnel, and I am no longer afraid that it is an oncoming train!   

Reference

Lithgow, J. (2000). The remarkable Farkle McBride. New York, NY: Simon & Schuster Books for Young Readers.

Keys for Project-Based Design in the COVID-19 Era

Lynn Ameen Rollins, Andrew Martin Rollins, and Kurt Ryan Rhoads

Case Western Reserve University, Cleveland, OH

This spring, the COVID-19 pandemic required universities across the United States to adjust their delivery of course content, find ways to evaluate students remotely, and in most cases, adjust to a student body no longer all living in the same time zone. While these challenges are significant for all courses, project-based design courses have an added degree of difficulty because interpersonal interaction is key to their success. Our Center for Engineering Action provides undergraduate students with opportunities to participate in multi-disciplinary team-based design projects, research, and coursework, which focus on advancing the public good through partnerships between local and global communities and Case Western Reserve University. All of our projects, both course-based and extracurricular, involve close communication with partners, and many involve international travel. The suspension of travel and the need for social distancing required new approaches to achieve our goals. We will briefly discuss five key attributes of projects that kept students engaged and how they impacted the adaption of project plans in response to COVID-19, based on our own reflections and student feedback.  

Strong Connections with Community Partners

The connections among our teams and between the teams and their partners are the foundation of all project-based work. Teams that had a strong connection before the COVID disruption fared better than those that were still bonding. Our Engineers Without Borders (EWB) Dominican Republic team benefitted from a relationship with our community partner that has lasted for over a decade. The team was preparing to travel this August to install a drinking water chlorination tank. But, when travel was postponed due to the pandemic, the team pivoted to finding new needs in the community. On the recommendation of EWB-USA, they conducted a survey of their partner’s needs in the wake of COVID-19. This resulted in a fundraising effort to acquire cloth face masks for the community. When our partner learned how much students raised, they texted a joyful reply translated as, “My God, you are my heroes!” As one student stated: “The opportunity to continue to support our community was refreshing, and I was really glad to help them in this time of great need.” 

Projects that Address Current Needs

As demonstrated above, adjusting plans can be the right decision when the needs of the community change. While working with vulnerable partners is not new to our students, COVID-19 presented a new, urgent need and also pointed out the urgency of existing needs. For example, our vaccine carrier and our pediatric pulse oximeter design teams were working on projects that were suddenly needed to address the current COVID-19 epidemic across the world, including our own communities. One student leader eloquently stated, “Framing our project work with an eye to the current world events and understanding how COVID-19 affects project work helped me feel more centered, because it made project work a way of feeling more in control despite everything that was going [on] in the world outside of my control.”  

Deadlines and Expectations

Deadlines and course incentives helped students stay focused when plans changed mid-semester. While we did our best to help all teams, students enrolled in courses maintained their projects better than students working extracurricularly. Even though courses transitioned to remote delivery and there were fewer face-to-face meetings, course office hours were held regularly with teams and reports were submitted on time. In contrast, students working extracurricularly always have to balance their project work with coursework, jobs, social activities, and other extracurricular work. Inevitably, extracurricular project work loses out. 

A Strong Sense of Team

Team and advisor meetings were more important than ever as a mental health check-in, since we all found ourselves isolated and surrounded by bad news. Multiple students reported that what motivated them to keep working was knowing that their teammates were still doing work. They did not want to disappoint their peers. Student leaders tried to set a good example and be positive for their teams.

Making an Impact

With travel postponed and project plans in limbo, team members found it difficult to stay engaged and focused. Students were disappointed, especially when implementation plans that were years in the making were pushed back. Students who remained hopeful that their work would indeed have an impact remained engaged through all the plan adjustments. Our Malawi team, which was scheduled to install a solar power system at a national park this May, is instead organizing local professionals to install the system that the students designed. While the team was hoping to travel and install themselves, they now look forward to the community benefiting from their new solar system, to which everyone contributed. Knowing that the project would ultimately succeed countered their discouragement.

Conclusion

In summary, travel to our partner communities, with the opportunity to connect with them more deeply, as well as the deadlines that travel enforces, provides great motivation. But in this time of limited travel, we learned the importance of finding alternative motivators. Engagement can remain high when projects are built on strong partner relationships and address needs that are current and relevant. When projects are for credit, students are more able to prioritize them even when unexpected stressors emerge. Under stress, staying even more closely connected with teams through video meetings and emails was vital for the well-being of both projects and individuals. Having a well-defined problem, even if it means adjusting to new circumstances, helps teams see that their work will have an impact. 

In some ways, the project disruptions have had a positive impact on how our center operates. As some activities have slowed down, we have had more time to reflect and make thoughtful decisions. Because all of our needs were changing, we also had more frequent meetings with our teams and partners, which strengthened our relationships.

Despite the challenges of this semester, our students unanimously feel hopeful concerning the future of their projects, and several students stated that this semester has taught them to be more compassionate, patient leaders. These traits are badly needed in our world today!

Teaching through COVID-19:  Undergraduate Calculus Project on the Number of COVID-19 Cases

Sungwon Ahn

Roosevelt University, Chicago, IL

Each semester integral calculus students complete a semester-long project which serves Roosevelt University’s dedication to social justice and civic issues and connects academic work to real-life problems (González-Arévalo & Pivarski, 2013). In Spring 2020, we provided a project to forecast the growing number of cases of coronavirus disease (COVID-19) using a logistic epidemic growth model with real data.  During this project, students concurrently learned various integration techniques and basic concepts of ordinary differential equations behind the epidemic model presented in the textbook for the course (Hass, Heil, Weir, Zuleta Estrugo, & Thomas, 2019).  Throughout the project, we expected that students would develop not only a deep academic understanding of calculus applied to epidemic modeling but also critical thinking, communication, and awareness of social issues.

The project consisted of four stages, each of which took a week or two: 1) a literature review on COVID-19, 2) introducing and developing epidemic models, 3) fitting the model to real data, and finally 4) a poster presentation.  Each stage was characterized by a distinct set of questions with equal importance but which did not require extensive knowledge or techniques from the previous stage.  For instance, the instructor evaluated the understanding of the background of COVID-19 and the readings at the first stage and evaluated computational skill with calculus in the second stage.  At the end of each stage, groups wrote a separate report.  In this way, the performance at each stage was evaluated independently so that students could avoid excessive work overloads at the end of the semester and keep their concentration throughout the lengthy project.  Also, students communicated regularly within each group and found the best way for each of them to make a contribution at each stage.    

For Stage 1, the instructor split the class into groups of four students.  Initially, each group was asked by way of a warm-up exercise to find the definition of epidemic vs. endemic and the differences between them.  The group conducted a literature review on the background of COVID-19 using external sources, answering a list of questions regarding for example causes, symptoms, geographic locations, prevention, and treatments of COVID-19.  In addition to that, they choose a similar epidemic such as SARS, HIV, or MERS, and found similarities and differences between those past epidemics and COVID-19.  We expected that this qualitative analysis would make the significance of COVID-19 clear to the students and motivate them to study the topic.

The class switched from in-person to online due to the COVID-19 at the beginning of the second stage.  More detailed written instructions were provided, and follow-up group discussions were held online every Friday.  Also, the instructor conducted Q&A sessions during the online office hour in order to minimize the impact of this radical change.  The second stage took place after the class had learned various integration techniques and basic methods for solving a special type of first-order ordinary differential equation.  The instructor introduced two popular population differential equations and their solutions: a logistic population growth model and an exponential population growth model.  Students were asked to derive solutions using the two models and to analyze the differences.  The class then explored an epidemic scenario in a simple but realistic setting with known parameters and initial conditions.  Meanwhile, the class also learned basic syntax in Mathematica, including a visualization of graphs and creating functions.  Students were asked to use Mathematica to respond to a list of questions, such as finding the shape of an epidemic curve and estimating the number of future infections.  All the work was written and was evaluated as a report.  

In the third stage, each group used outside sources to find actual historical data on the number of cases.  Depending on their interests, the group could choose to find the number of cases from a local level to the global level.  Then each group calculated appropriate parameters and an initial condition of a logistic population growth model to fit the historical data.  The method for getting appropriate parameter values and the initial condition was developed and modified from Leonard Lipkin and David Smith’s module (2004).  Because coding in Mathematica is too complicated for students at this point, the instructor prepared sample code and gave the students step-by step-instructions for reading and understanding the algorithm.  Thus students did not struggle with syntax errors, but instead spent time on getting the best parameters.  At the end of this stage, each group had experienced the full process of mathematical modeling and wrote a report about the analysis of the epidemic curve and the forecast of future cases.  

At the final stage, each group made a poster which incorporated all the results obtained from the previous stages.  Sections in the poster included an introduction from Stage 1 and data and modeling from Stages 2 and 3.  Also, the instructor asked each group to write a discussion of the advantages and limitations of the logistic model.  The study of limitations proved to be particularly important, because the logistic model doesn’t fit some actual data, especially at a local level.  Some groups pointed out that the reason for the limitation is a lack of testing, the lengthy dormancy of the disease, and a lack of data.  Once the posters were revised, they were presented in the online Roosevelt Student Research Symposium.

  The benefit of this project was that it gave students an idea of how mathematical modeling with calculus can be used to make better predictions regarding ongoing issues.  More than understanding mathematical concepts and solving a math problem, students came to appreciate the application of math to civic issues. Biology and chemistry students especially found this activity interesting, and enthusiastically communicated with their classmates to get better estimates.   In the course of the project, we identified two main challenges.  Even though each parameter in the model is adjustable to fit the data, the number of cases in some regions shows a non-logistic curve, for many known reasons.  The positive side of the unexpected result, however, was that students discussed and identified the reason for the limitations of the logistic model, and then suggested alternatives, such as changing the model or data.  The instructor could then ask students to summarize their creative alternatives for future studies.  Secondly, students with little or no experience in programming had a hard time keeping up with the class in Stages 2 and 3.  We believe that this difficulty can be handled with tutoring and by devoting more time in Stages 2 and 3 to the acquisition of programming skills.

References

González-Arévalo, B., & Pivarski, M. (2013). The real-world connection: Incorporating semester-long projects into Calculus II. Science Education and Civic Engagement: An International Journal, Winter 2013, 17–24. Retrieved from http://new.seceij.net/issue/winter2013/from-the-editors-7/

Hass, J., Heil C., Weir, M.D., Zuleta Estrugo, J.L., & Thomas, G.B. Thomas Calculus: Early Transcendentals. (14th ed.) Harlow, UK: Pearson Education.

Lipkin, L., & Smith, D. (2004). Logistic growth model. Convergence, December 2004. Retrieved from https://www.maa.org/press/periodicals/loci/joma/logistic-growth-model

Democracy and Disruption: Science Education During a Pandemic

Mubina Schroeder

Molloy College, Rockville Centre, NY

We are living in uncharted times—some slivers of RNA have brought communities around the globe to their knees. Remarkable disruptions have unfolded in our daily lives, and communication from leadership about the factors involved with the outbreak have been nubilous and disjointed at best. The pandemic has laid bare the problematic issues in our society: inequality, injustice, and a lack of sound leaders.  For instance, while our political leaders rushed to thwart economic decline, they largely missed addressing the other, crucial form of capital that is being deeply affected: knowledge capital.  Pierre Bordieu (1984) described the different types of capital that circulate in our societies and said that cultural capital encompasses knowledge and skills that individuals use to scale barriers in society.  Cultural capital and the knowledge capital it encapsulates is a road to equity, and I’ve found that giving students agency over their knowledge capital via citizen science has been critical during this time of upheaval.  

My first presentation about citizen science was at the 2017 Science Education for New Civic Engagements and Responsibilities (SENCER) Mid-Atlantic Regional Conference, where I lauded its positive aspects for science education during.  Citizen science, with its innate democratic underpinnings, offers a way for any member of the public to meaningfully enrich the scientific endeavor.  I did not expect that citizen science would prove to be so salient as a tool in my science education classrooms as we faced the turmoil associated with the pandemic.

Figure 1: Live map generated by college science education students at Molloy College.

When the disruptions from the pandemic first started manifesting themselves in our lives, many of my science education students, most of whom were pre-service teachers, seemed apprehensive during class.  To address the anxieties surrounding the outbreak and to engage them in a shared project, I created a collaborative Google Map that housed real-time data points about the virus’ infection numbers across the globe (see Figure 1 below).  Students in the class could update the data parameters, and many added data points such as school closures, and partial or total community shutdown measures.  Unexpectedly, students worked fervently on the map and shared it widely within their networks.  When I questioned them as to why they engaged so actively with the project, one student said that participating in the map project helped him feel like he had some control over understanding the outbreak and that he was contributing to the knowledge base about it.  These sentiments align directly with the concept of citizen science and its democratic approach to creating knowledge capital.

Additionally, in the initial weeks of online learning in March 2020, science education students in my courses were asked to create a digital storytelling project about their experiences with COVID-19 and how it consociates with their ideas about science investigation and discovery.  In my pedagogical approach, storytelling symbolizes an egalitarian avenue for understanding diverse experiences (Alterio & McDrury, 2003).  During the pandemic, however, storytelling has become a way for students to highlight how they used their science reasoning skills to help them make life-or-death decisions.  One student did their presentation on how they use their own research and forum information to stay informed, feeling that official statements lacked verisimilitude: “I don’t trust what they’re saying about wearing masks because when I look at countries where they have the outbreak under control, people are wearing masks everywhere.  Therefore, I have masks for myself and my family and we wear them anytime we go outside.  My father has a lot of health issues and we can’t take any risks because we live in a building where many of our neighbors are dying from this.”  This was during the period of time when the Centers for Disease Control (CDC) was broadcasting the futility of mask-wearing to affect the transmission of the virus or to provide protection from the virus.  It later dawned on me that the student may have potentially been saving their father’s life; not only that, but other students viewed the project and commented in the discussion forum that they were going to start making their own masks to wear.  The ripple effects of one student’s science research were enormous against the backdrop of the pandemic.  

In my classrooms, teaching science during a pandemic has largely meant encouraging students to find knowledge for themselves and to be avid detectives in finding the truth.   Analyzing the data associated with the outbreak or creating decisions based on personal research helps quell some of the anxiety; knowledge capital can give students a sense of agency in an unpredictable world. And on their end, science researchers have acknowledged the power of citizen science during this pandemic: the American Lung Association COVID-19 Citizen Science Study and the University of California San Francisco COVID-19 Health Record Data for Research are examples of recent successful citizen-science-based information campaigns.  In the end, 2020 may be marked as the year that members of the public vetoed the status quo epistles and found truth for themselves.  Citizen science is, undoubtedly, democracy in action.  

References

Alterio, M., & McDrury, J. (2003). Learning through storytelling in higher education: Using reflection and experience to improve learning. London: Routledge.

Bourdieu, P. (1984). Distinction: Social critique of the judgement of taste. (R. Nice, Trans.) London: Routledge and Kegan Paul.

COVID-19 Connections: Anti-viral Teaching Strategy

J. Jordan Steel

United States Air Force Academy, Colorado Springs, CO

Abstract

The COVID-19 pandemic has resulted in a sense of disconnection. Students and instructors are physically separated from campus and are limited by social distancing and shelter-in-place orders. As the COVID-19 virus spreads across the globe, leaving devastating destruction in its wake, an “anti-viral” strategy is desperately needed in order to teach students and to allow them to remain connected to the professor, their peers, and the course content. This manuscript describes the author’s attempt to develop a COVID-19 connection with his students and use an “anti-viral” strategy in transitioning to online teaching and learning.  

As biologist, parent, and teacher, I find that COVID-19 has disrupted every aspect of normalcy. Pre-COVID-19 meant long days, working in the microbiology lab, advising undergraduate research students, teaching college courses, meeting and advising students regarding course schedules and lifetime goals. Then COVID-19 hit. I am now at home, not allowed in the research lab, my students have been sent home to 18 different states, and I am trying to remember how to do long division as I homeschool my kids.  Life is totally different, and teaching and connecting with students has changed. As I have reflected and tried to adapt quickly to teaching in an online format, I can’t help but consider my teaching strategy “anti-viral.” 

Let me explain what I mean, as a microbiologist/virologist, by anti-viral teaching. Viruses are obligate intracellular parasites. By definition, viruses are lifeless, selfish, manipulative little protein shells that take everything they need from their host cells without regard to how their actions will impact the overall situation (Figure 1A). They are disconnected from anything bigger than themselves, which due to their incredibly small size, is basically everything. Viruses have been shown to take the host cell hostage and dominate and alter normal cellular physiology so that only the virus is happy, ultimately leading to the destruction of the host cell (El-Bacha et al., 2007; Fontaine, Sanchez, Camarda, & Lagunoff, 2014; Goodwin, Xu, & Munger, 2015; Sanchez & Lagunoff, 2015; Gullberg et al., 2018). Viruses have the smallest known genomes of all organized genetic material, but with that incredibly small genome, they can take over cells and cause massive multicellular organisms to fall and succumb to the infection (Belov & Sztul, 2014). So despite their small size, viruses’ selfish nature can lead to massive destruction. SARSCoV2, the causative agent of COVID-19, has brought the world to its knees, caused economies to crash, and has ultimately taken the lives of thousands of people—all because of its disconnected and selfish nature. As a parent and educator, I want my children and students to have none of these qualities. I want to help students be connected to society as a whole and be contributing members of the global population who are actively trying to serve others, solve problems, and make the world a better place (Figure 1B). Hence, my “anti-viral” teaching strategy. 

Figure 1 A & B: Diagram representing A) viral strategies that are similar to virtual replication and B) anti-viral strategies that are opposite of the virus and will hopefully enhance the learning environment during this COVID-19 pandemic.

With my students being sent home and being spread across various time zones, it was difficult for us to connect with each other. I am a firm believer in active learning, group work, and student engagement with each other and the instructor, but in March 2020, higher education was suddenly thrown into a situation where social distancing and online learning seemed to prevent those interactions and inhibited connecting in person three times a week in class. Many students started to feel isolated, alone, and increasingly disconnected from me, their peers, and the course (Van Lancker & Parolin, 2020). As a novice online instructor, but an advocate for connection and relationships in higher education, I began fighting the negative impacts of COVID-19 by focusing “anti-viral” strategies around connection.

I focused first on my own connection with the students. Personalized emails were sent out to every student; the purpose of the main body of each email was to check in, express my confidence in the ability to still be successful in the course, and tell every student at least one thing that I appreciated/quality that I noticed from our time together. It was difficult and took some time, but I believe it is important for students to know that their professor knows them individually and believes in them. I gave each of them my cell phone number and told them that I was always a phone call or text away. I also highlighted my online office hours and encouraged them to come and talk to me in those video conferencing office hours as often as they could. I told them that I wanted to hear their stories and just talk about this crazy COVID-19 life. Many students replied and maintained regular contact through office hours for the rest of the semester. Those that I didn’t see very often received second and third personal emails checking in throughout the semester.

The second task was making sure the students were connecting to each other. I began using Perusall, an online discussion platform for reading and commenting on course documents. Students were put into small groups and had the opportunity to communicate asynchronously regarding the assignments, or objectives, or the course in general. Students were required to connect and make at least five posts each week, which helped students remain connected with their peers. Their comments were not graded other than participation, and although I did see some great discussion about the course objectives, but I also saw just social commentary, memes, jokes, and group peer bonding that I value as an important part of being in a course and walking the same learning experience together.  

Lastly, I wanted to ensure that my students were connected to the course content. In a traditional classroom, it is easy enough to watch students’ faces and quickly realize who is lost, bored, or excited about the material. In an online format, it is easy to feel disconnected from that real-time feedback and formative assessment. I implemented more quizzes and simple online questions to help me understand what concepts the students were understanding and which objectives needed more time. I posted videos of me explaining the material as well as popular YouTube videos explaining different aspects of the material. I tried to have as many contact points as possible for the students to interact with the course material: online reading/discussion assignments, pre-class online quizzes, reflections, and practice problems. I implemented weekly reflections that provided an opportunity for the students to summarize the big picture learning points for the week and reflect on real-world applications. I tried to teach with COVID-19 examples as much as possible to help capture some of that genuine curiosity and turn it into true learning and scientific discovery.

Despite the complete change in life during the spring 2020 semester, by adopting a COVID-19 connection and an “anti-viral” strategy, I believe the students were able to maintain connection—with their instructor, their peers, and the course content—and that we were able to remain linked to the bigger picture and see past the COVID-19 pandemic. 

References

Belov, G. A., & Sztul, E. (2014). Rewiring of cellular membrane homeostasis by picornaviruses. Journal of Virology, 88(17), 301–314.

El-Bacha, T., Midlej, V., Pereira da Silva, A. P., Silva da Costa, L.,  Benchimol, M., Galina, A., &   Da Poian, A. T. (2007). Mitochondrial and bioenergetic dysfunction in human hepatic cells infected with dengue 2 virus. Biochimica et Biophysica Acta, 1772(10),1158–1166.

Fontaine, K. A., Sanchez, E. L., Camarda, R., & Lagunoff, M. (2014). Dengue virus induces and requires glycolysis for optimal replication. Journal of Virology, 89(4), 2358–2366. doi: 10.1128/JVI.02309-14.

Goodwin, C.M., Xu,S., & Munger, J. (2015). Stealing the keys to the kitchen: Viral manipulation of the host cell metabolic network. Trends in Microbiology, 23(12),789–798.

Gullberg, R. C., Steel, J. J., Pujari, V. Rovnak, J., Crick, D. C., & Perera, R. (2018). Stearoly-CoA desaturase 1 differentiates early and advanced dengue virus infections and determines virus particle infectivity. PLoS Pathogens, 14(8),  e1007261. doi: 10.1371/journal.ppat.1007261.

Van Lancker, W., & Parolin, Z.  (2020). COVID-19, school closures, and child poverty: A social crisis in the making. Lancet Public Health, 5(5), E243–E244.

Dr. Seiser’s Immunology Class or:
How I Learned to Stop Worrying and Love the Textbook

Robert Seiser

Roosevelt University, Chicago, IL

Spring 2020 was my first semester teaching immunology. As a seasoned biology instructor and SENCER community member, I felt fairly well equipped to take on a new course prep (just stay “one lecture ahead of your students,” they say) but faced the usual questions about the balance of content and context. Would I be prepared to navigate concepts that I hadn’t focused on in decades? Would I be able to incorporate civic engagement and active learning pedagogies effectively? Would students be willing to commit to the process of learning and discovery that these pedagogies involve? Would I use multiple-choice exam questions? 

After giving myself a crash course during the winter break and sorting out the syllabus, I started the semester with a simple plan. I would begin each week’s class with a “science in the news” topic, something related to immunology that could incorporate relevant course topics and spur students—many of whom aspire to healthcare careers—to see the immune system at work in different aspects of human health. On January 27, the first day of class, I spent a few minutes on introductions, then showed a newly published electron micrograph of SARS-CoV2 and asked, “So, what have you heard about this emerging coronavirus?” After an informal discussion, I used one of my favorite resources, Cell’s SnapShots infographics, to introduce the immune response to viral infections and to lay the foundation for many of the course’s main ideas. 

Needless to say, I never had to pick another science news topic on which to focus. The start of each week’s class became a time for all of us to compare notes on COVID-19 cases in Chicago, highlight new research, and bring our nascent understanding of immunology to bear on a real-life issue. And then, just before the spring break, our group of nearly 35 lost the ability to meet together in person. I faced a new set of questions about my class. Would I require everyone to participate in synchronous discussions? How and when would students get reliable information for their remote learning? What would I do about the scheduled end-of-term projects? Should I change the course format and teach everything through the lens of COVID-19?

After a few days of reflection and attempts to prepare for teaching from home, it became clear that the challenge was greater than sorting out logistics. The pandemic had become real for all of us, and all too real for those who work in hospitals and pharmacies, or who had family members at high risk. Several students faced significant challenges to financial security, internet access, and other requirements for full class participation. I sensed that they wanted to learn about the biology of the novel coronavirus, but in their academic work, they also wanted to have a sense of control and self-determination that they didn’t feel in other aspects of their lives. If I made COVID-19 immunology into an all-encompassing course theme, my class might offer no refuge, no chance to get immersed in academic study for the purpose of planning a better future. On the contrary, it could be a constant reminder of the present challenge. 

So I did something that I never thought I’d do again: I required everyone to make use of a textbook. The publisher of my recommended text granted free access to the online course site and e-book for the remainder of the term. I utilized interactive content, assigned online quizzes, and set flexible due dates. I followed up with students after quizzes and writing assignments, as a way to “check in” and make sure their needs were being met. I opened up breakout rooms in our weekly Zoom class meetings, ostensibly to discuss new course content but really to give students a chance to reconnect and interact with each other as they had when we were all on campus. And for the student presentations, I asked them to choose their own immunology topics. Tellingly, only one person chose SARS-CoV2, while the others drew inspiration from their own interests or from immune disorders mentioned in the textbook. By letting the authors and publisher of my chosen textbook take a greater role in the class, I had a little more time to find a new work-life balance, to prepare the concepts we would be discussing each week, and to incorporate news about COVID-19 as appropriate. 

Much of my involvement with the SENCER project has focused on the “civic engagement” part of that acronym—bringing the world to students and equipping students to change the world. After Spring 2020, I better understand the “responsibilities.” I realized that the unique opportunity afforded by teaching immunology in the midst of the COVID-19 pandemic carried with it two new responsibilities: first, to help my students make sense of the science and take an evidence-based approach to risk and decision-making. Second, to give my students a common set of tools, specific goals to meet, time to work toward those goals, and space to find their own balance during a time of disruption. It wasn’t perfect, but I am proud of what we accomplished together and am grateful for their resilience. And maybe next time, I’ll even require the textbook again.

Teaching Through COVID

Maria J. Serrano and Shazia Ahmed

Texas Woman’s University, Denton, TX

Students and professors had different needs during this pandemic. We all think and react differently, and each learns in different ways. In retrospect, class content did not change. However, what changed was the delivery of information, presentation, and how professors adjusted while learning new tools.

We all had to leave our greatest fears behind and balance home and work environments that suddenly became one. We all had to work, cook, and manage a household that resembled a three-ring circus. That is why we had to become resilient by shortening the amount of time and space it takes between falling down and getting up, feeling bad and feeling better. We had to shorten the distance between our disbelief and believing in ourselves once again.

Teaching requires passion, patience, time, and effort. This pandemic demanded that we give only our very best and be creative with our time, and it gave us the wisdom and patience to counsel students so that they themselves could conquer their fears and accept their new reality. We no longer had the safety net of a nice routine that each of us had developed and perfected throughout several years of teaching. Suddenly, everything was not the same and we had to trade our classrooms and laboratories for a “home office,” spare room, or some corner at home. This change was abrupt, and without the benefit of a grace period; it just happened.

The last few months we have felt like pilots of a flight that began with a very detailed plan; but while we were in midair everything changed and forced us to come up with a new plan. Some students were already experienced in taking online classes, while for others this was their first time using this learning interface. The first thing we did was to communicate how events were going to unfold with a lot more frequency and using different media to ensure that the message not only reached students, but that it was understood. We had to give them clear instructions about our journey, with clearly marked milestones, including a map telling us where we were and where we needed to go. We also had to convince our passengers (students) that everything was going to be fine and assure those who were afraid and confused that we were available day or night.

When you teach a class, you develop a relationship with students. You pick up on their energy and adjust lectures based on their feedback. When you record a video for them to watch online, you no longer have their energy, and you cannot change your delivery. The most frustrating part is that you don’t know if what you just explained is clear. You no longer have the ability to ask them a simple question: “Is this clear?” You must deliver the message and use different strategies, such as online office hours, discussion boards, and FAQs, to see if they received the message as intended. Grades from tests and homework were going to be too late to make any meaningful adjustments. To address this, we performed surveys to gauge the efficacy of our approach to certain topics.

When you teach online you lose a vital connection that professors work so hard to establish in a classroom; even visual cues are enough to know if students are interested and if your message is getting through them. During online lectures we highlighted the key parts that students needed to learn from each subject. Also, we figured out that long lectures were going to backfire. It is very challenging to keep students engaged for a whole class. It is hard to imagine students sitting undisturbed in a dorm or home. Thus, we kept online lectures crisp, clear, and shorter than normal lectures. On the positive side, they can always rewind and watch again if they didn’t get it the first time.

During this pandemic it was of paramount importance to have institutional support. Supervisors, university counselors, and colleagues at TWU were the control tower while professors were flying airplanes. They helped track progress and provided valuable advice and training when obstacles got in the way. Thanks to this support network, professors became expert at using online tools like Zoom, Panopto, and Canvas. Students had to become more disciplined, independent, and organized. As educators, our job was to help them get there by providing them with training and tools until they were self-sufficient. This was difficult, because students had to deal with unprecedented events affecting not only their studies, but their way of life, including relationships with families and friends. 

This pandemic took everybody by surprise. There was no time to overthink; we had to act or react as best we could. We realized that the best way for our students to succeed was to learn more about the changes in their environment. Thus, as part of our Neuroanatomy class, we asked students to find out more about COVID-19, how it is transmitted, forms of treatment, and possible outcomes related to the neurological system. We believed that students could deal with this extraordinary situation more effectively if they were more knowledgeable. Another benefit was that they became more informed members of our community by understanding basic principles of virology. And by taking care of their own health and wellbeing they could also educate others. Furthermore, they would follow government regulations during the lockdown; not because the governor said they must, but because they truly understood why these measures needed to be taken. They needed to know that a virus is not just a disease described in a chapter in their textbooks, that viruses are real and can profoundly affect peoples’ lives. Many students will become professionals in hospitals, doctor’s offices, laboratories, etc. We asked students to think like patients. This is very important because we must develop students who are competent professionals and who also truly care for the well-being of their patients. This pandemic has changed our world, and whenever we felt exhausted, all we had to remember was that we are educating the people who will fight the next pandemic. That was enough motivation to get us moving again.

Teaching Through COVID: Navigating Uncharted Waters

Mangala Tawde

Queensborough Community College, City University of New York, Bayside, Queens, NY

Queensborough CC (QCC), CUNY is located in Queens, in the heart of New York City. Queens is one of the most diverse communities in the city, and QCC’s students, faculty, and staff represent a beautiful amalgamation of over 50 diverse ethnicities, cultures, and spoken languages. By the end of February the spring semester was in full swing at QCC, and we were looking forward to the upcoming spring break in late March–early April, making plans for a family vacation. The scanty news of the coronavirus outbreak in China and other parts of the world had just started to trickle in. 

Concern started to rise as the first confirmed case of COVID-19 in New York City was announced and the QCC/CUNY administration started sending emails about having a backup plan in case we had to “go online.” It still sounded like a far-off possibility since “online education” was always looked down upon. However, as the grim reality of the severity of the spread of COVID-19 started to emerge, suddenly “going online” became an emergency. Though I had been teaching a partially online (PNET) microbiology class for few years, we had never thought of ever teaching completely synchronous classes. The College started offering training sessions on various platforms such as Blackboard Collaborate, Webex, and Zoom. 

On March 12 CUNY announced that for the following two weeks—until spring break—all classes would be taught online. Though the first natural response was panic, faculty and staff sprang into action to get ready to start teaching online. Instructors, course coordinators, and other admin staff had meetings to decide on a course of action, and various online resources started to pour in. I teach human anatomy and physiology and microbiology, the pre-allied health courses, and coordinate the microbiology course. Getting myself acquainted with online teaching modality was urgent; bringing my not-so-tech-savvy colleagues onboard with new technological advances was another challenge. However, as they say, you learn to swim when you fall into the water; the team spirit emerged and we started sharing not only our panic, fears, and concerns, we started helping each other to come out as a strong face for our students who were confronting worse fears and situations.

As we started teaching, in front of our laptop cameras, trying to put on a brave face for our students, some grim realities started to emerge on the other end. Even during normal semesters our classes suffer from a 20–30% withdrawal rate. Now, we saw a sharp decline in attendance for several reasons: non-traditional students being unfamiliar with online learning, inaccessibility of computers or tablets, loss of jobs, and change in their family situations. These difficulties were palpable across the laptop camera but there was very little that we could do to help, which was frustrating and sad. To alleviate the  challenge for students who had no access to a proper computing device for learning in the online environment, CUNY announced a one-week “Recalibration Period,” during which time tablets and small computers were distributed to students and staff who needed them.

Changes in the courses we taught were inevitable since face-to-face instruction was out of the question. The lecture components of the courses were least affected but the lab deliveries were the biggest challenge. Fortunately, for the microbiology and other biology labs, most of the hands-on skills were covered before we went online, and so the students did not seem to miss a lot in terms of their laboratory experience. Preparing the PowerPoint presentations and putting together relevant videos, animations, and any online activity that we could find for all the labs, however, was nothing less than a nightmare. The time used by students for performing experiments in the lab was replaced by watching videos and my utmost sincere efforts to explain how we “do things” in a real (not virtual) lab. It was nice to see that students expressed their disappointment for missing the experience. My conscious educator mind kept telling me that this was inadequate, but my civic sense pacified the educator; this was the best we could do for our students to keep them and all of us safe. Though they are missing the important hands-on experience, they are still learning through the videos and our talks delivered across many miles from the other end of the webcam. As part of the course grade, we embedded a homework assignment on COVID, where the students reflected on what their experience as a student was during the pandemic and what they faced as family or community, as well as how studying microbiology is relevant during these trying times. Reading these reflections has been inspiring and eye-opening to say the least. 

As the classes continued, we learned more than we had asked for—we learned through talking to each other and realizing how everyone is in a different situation but still tied together by a common bond of being hit by a pandemic and being equally vulnerable to this mighty virus. Sadly, a few colleagues and friends succumbed to COVID too. Students shared their stories of sickness and death which were heart wrenching. Despair seemed to fill the world, though there would be some rays of hope here and there.  A colleague shared her experience when the father of one of her students got ill with COVID and was taken to the hospital. She reached out to her class for help, and another student ,whose father worked at the same hospital, responded immediately, helping the student to establish contact between the sick father and worried family. These incidents were heartwarming and soul-lifting. Many of our students, still training to be nurses, volunteered at various NYC hospitals working back-to-back 12-hour shifts. This filled our hearts with pride and joy. 

Now, we are on the other side of the mountain. We are accustomed to online teaching and learning. However, the fear of possible COVID-19 infection still looms large and we are unsure how the fall semester will look. But one thing for sure, WE—the human race—are tough, and we will fight this TOGETHER!

Molecular Cell Biology: New Challenges and New Relevance in a COVID-19 World

Brian P. Teague and James B. Burritt

University of Wisconsin–Stout, Menomonie, WI

The authors teach the lecture (JB) and laboratory (BT) sections of an advanced molecular cell biology course at the University of Wisconsin–Stout.  UW–Stout is a polytechnic institution, and we pride ourselves on a student experience that is centered around student/instructor interactions in small classes and hands-on learning in laboratories. This model of instruction was upset by the COVID-19 pandemic, which necessitated an emergency transition to remote teaching and a mad scramble for new practices that accounted for the necessary physical distance while maintaining some semblance of sound pedagogy. These changes primarily affected the content of the course, its delivery, and our assessment of student learning. Student feedback indicated some unambiguous successes as well as some areas for continued improvement.

The COVID-19 pandemic brought us and our students a fresh context in which to learn about molecular cell biology, and we sought opportunities to incorporate that context into our teaching. For example, a major goal of the laboratory section is to familiarize students with some of the foundational methods that researchers use to understand the inner operations of cells. One of those methods, a common technique for measuring gene expression called qPCR, is also the basis for the molecular diagnostic the United States Center for Disease Control and Prevention used in the early days of the pandemic. To increase the relevance of students’ learning about qPCR, BT designed a “paper” laboratory experience that required students to analyze some real (but renamed) data to find a patient who tested positive.  Another laboratory was replaced with an assignment that introduced students to antibody-based methods before asking them to design an antibody-based rapid diagnostic for COVID-19. Such assignments also addressed learning goals around experimental design and data analysis, even though we could not meet in a laboratory to perform the experiments and generate the data. While some students appreciated the direct connection to current events, many expressed disappointment that their hands-on learning had been replaced with “just another set of assignments.”

In addition to its effects on course content, the COVID-19 pandemic had a dramatic impact on how we delivered that content. For example, JB uses PowerPoint presentations in his lecture classes, and he had experimented with synchronous online delivery of those lectures while students and instructors were still on campus. However, as we moved to emergency remote teaching, it became clear that some students had insufficient internet access to participate in synchronous sessions, while others had schedules or home lives that would interfere with “attending” virtual class. These unacceptable inequities led to his adopting an asynchronous model, where he would record a voice-over to accompany the slides and then upload the narrated presentation to our learning management system. While creating these recordings was time-consuming, students responded positively to this format: a number expressed appreciation for the flexibility this approach provided, such as the ability to slow down or re-watch the lecture on their own time.

Finally, the pandemic prompted us to reconsider our notions around assessment of student learning. JB’s summative assessments have traditionally consisted of multiple-choice and short-answer exams administered in class. This semester, he replaced them with longer essay-format exams, which students could complete over several days with the assistance of any inanimate online or printed material. Importantly, he limited student responses to no more than seven sentences, which allowed him to assess concept comprehension while keeping grading time reasonable. Student feedback was broadly encouraging: some were frustrated by the brevity required of them or the fact that not all the material they had learned was “covered” by the exam, but many appreciated the flexibility of the new format and the opportunity to demonstrate the depth of their understanding. At least one student also noted that this sidestepped the issues they had with internet access in an “online/proctored” exam in another of their courses.

In sum, adapting our advanced molecular cell biology course to emergency remote teaching required rethinking several of our pedagogical approaches. Some these will remain with us when we return to face-to-face instruction—for example, several students suggested that JB continue using the essay-based exam format, while BT will spend more effort situating his courses’ topics in current events and societal context. This semester also underscores the challenges in replacing the residential higher education experience with an online one: when asked what factors impeded their success in this course, an overwhelming majority of our students responded with “lack of motivation.” It’s easy to imagine why: all at once, their community of dedicated learners and their real-time interactions with passionate instructors and their cutting-edge laboratory experiences were replaced by . . . a computer screen. We suggest that this both highlights the unique value of residential post-secondary education and challenges us to create online learning experiences that engage our students with the same intensity as in the classroom and the laboratory.

Critical Thinking and Data: Understanding the Intersections Between Communication and Mathematical Modeling

Anne M. Stone and Zeynep Teymuroglu

Rollins College, Winter Park, FL

Like everything else, higher-education curriculums will look different post-COVID-19. During this global health crisis, many of us have become daily consumers of science and math through news reporting and conversations with family, friends, and colleagues. Only a few months ago, we were watching the morning news to get information about the weather or political candidates, but today we are all drenched in the news media’s COVID-19 coverage with heat maps, data accuracy, mathematical models, etc. Today, non-technical audiences are listening to journalists, broadcasters, and politicians talking about “flattening the curve,” “exponential growth,” and “risk factors.” The students who sat through a math class thinking “When will I ever use exponential or logarithmic functions?” could never have predicted their knowledge would be so relevant. None of us, not even applied mathematics instructors who teach Susceptible-Infectives-Recovered (SIR Models) using Kermack-McKendrick analysis (1927), would have imagined that news anchors would be talking about the basic reproduction number, . 

In March 2020, we developed a brand-new interdisciplinary course, Communicating Math in a Global Health Crisis, to be taught online during a four-week summer semester. The idea of designing and teaching an interdisciplinary course with a focus on the COVID-19 pandemic was motivated by the urgency of informing our non-math majors about basic mathematical modeling principles as they watch the COVID-19 news in a politicized environment. Our course was designed and taught with the SENCER approach (Burns, 2010) of facilitating and cultivating a community of learners who are committed to studying in an interdisciplinary environment with problem-based projects and socially relevant activities about COVID-19. 

The course emphasized the importance of interdisciplinary work, particularly integrating data analysis and mathematical modeling with theories of communication, to better understand the current global health crisis. Students first learned about social determinants of health, in order to understand the context that frames so much of the news about COVID-19. We discussed how privilege comes in many forms and how structural inequities are often communicated in quantitative terms that can be confusing to a lay audience. Students also practiced epidemic models with activities and projects that addressed complex issues related to the spread of COVID-19, such as inequality in health, education, wealth distribution, or race/ethnicity issues. A series of assignments that intersect mathematical modeling and communication principles allowed the students to observe and analyze the ways in which math is communicated through various news outlets. Discussions of media artifacts led to conversations centered around questions like, “Who gets to be counted in the COVID-19 data?”; “If we see a table and/or an equation, does math anxiety make us change the channel?”; “Do we need a fancy graph to explain what to look for in the data?”; “Can we trust every graph we see on the news/internet?”; “Are the fancy graphs telling the truth?”; “When a report states, ’exponentially growing,’ what does it mean?”; and “Can you sustain an exponential growth for a long time?”

In a media log project, we gave students the opportunity to keep up with current news stories and record examples of message framing and various theories of communication and media studies in action. The students shared what they were reading, making note of how mathematical modeling was communicated in terms of predictions and mitigating or increasing risk. We also asked the students to interview each other to show the contrast between quantitative research with large data sets and qualitative, interview-based research that gives a more detailed sense of how the media are experienced during the pandemic. 

Our limited experience with online teaching during the second half of the spring semester showed us that fostering student participation in remote teaching might present a challenge. We met that challenge using a variety of strategies including using the think, pair, and share method as students discussed the intersectionality of qualitative and quantitative methods. More often than not, we asked students to lead class discussions and engaged them with open-ended questions based on readings and current events. As we all were (and continue to be) bombarded with the news media’s COVID-19 coverage in such a polarized environment, our course provided a safe space for students to share their thoughts, voice their concerns freely, and learn how to develop a critical eye for analyzing and assessing information in order to increase the knowledge and skills that are essential for making informed decisions about both their health and communicating about COVID-19. 

Learning Resources for Communicating Math in a Global Health Crisis

National Cancer Institute. (2011). Making data talk: A workbook. Retrieved from https://www.cancer.gov/publications/health-communication/making-data-talk.pdf

Nelson, D. E., Hesse, B. W., & Croyle, R. T. (2009). Making data talk: Communicating public health data to the public, policy makers, and the press. New York, NY: Oxford University Press. 

Barton, J. T. (2016). Models for life: An introduction to discrete mathematical modeling with Microsoft Office Excel.  Hoboken, NJ: John Wiley & Sons.

Bliss, K. M., Fowler, K. R., & Galluzzo, B. J. (2014). Math modeling: Getting started and getting solutions. Philadelphia: SIAM.  

References 

Burns, D. (2010). SENCER in theory and practice: An introduction and orientation. The American Chemical Society Publications, 1037, 1–23. Retrieved from https://pubs.acs.org/doi/10.1021/bk-2010-1037.ch001

Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 115(772), 700–721. https://doi.org/10.1098/rspa.1927.0118

Making Lemonade: Adapting Project-Based Learning in the Era of COVID

Bridget G. Trogden and David Vaughn

Clemson University, Clemson, SC

Overview

As the pre-Socratic philosopher Heraclitus reminds us, everything in life is flux. What was true in 500 BCE is still abundantly true in 2020 CE. In particular, those of us working at the higher-education crossroads of science education and civic engagement have had to adjust and adjust again as we have rolled with the collective punches of travel bans, student recalls, campus closures, online teaching, and massive anxiety, stress, loss of income, illness, and death impacting our campus and broader communities. 

In this article, we wish to reflect upon and provide insight into ways that we adapted a signature program at Clemson University (Clemson Engineers for Developing Countries) to maintain a high bar of student learning through the COVID impacts. Students, instructors, and community partners—despite setbacks—were able to access previously untapped strengths in the areas of initiative, independence, resilience, and creativity.

Engagement by Design

Clemson Engineers for Developing Countries (CEDC) was created in 2009, when groups of engineering students began long-term projects to develop and maintain a municipal water system in rural and mountainous Cange, Haiti. In the intervening time, CEDC evolved into a dual-nature structure as both a service-learning organization and a one-hour research course enrolling between 80–100 undergraduate students per semester across every undergraduate College and over thirty majors. 

CEDC students work with Cange-based community partners at one of three levels of engagement: (a) project-based learning (all students), (b) place-based trips to Cange during University breaks (~12 students per year), or (c) field placement of resident interns in Cange year-round (two to four interns per year) (CEDC, 2020). 

CEDC operates with a faculty program director who oversees the projects and the course elements. The faculty director is supported by a student program director, student functional area directors, and student project directors, all elected annually by the students in the course. Industry experts frequently work with project teams to provide support and guidance.

Figure 1: View of mountain from Zanmi Lasante Compound in Cange, Haiti.

Engagement by (Re)Design: The First Pivot Due to Localized Civil Unrest

Civil unrest in Haiti in the spring of 2019 prompted the first major challenge to the CEDC structure, when the U.S. Department of State issued a travel ban to Haiti. All Clemson interns in Cange were recalled and future place-based trips became uncertain. At the same time, conversations were occurring institution-wide about the ways that a public, land-grant, R01 institution such as Clemson University should and could engage the world. 

CEDC underwent a change in scope, not only to support ongoing commitments in Cange, but also to identify and mitigate multidisciplinary community-based needs on a regional, state, and local level. The one-hour course was restructured to educate students on UN Sustainable Development Goals (Division for SDG, 2020), centering on one SDG per week. Additionally, student project units started using the Microsoft Teams software for collaborating and sharing project deliverables in real time and asynchronously. 

Engagement by (Further Re)Design: The Second Pivot Due to Worldwide Health Crisis

The revised CEDC operational infrastructure made the impacts of the Spring 2020 COVID-related adjustments much less difficult. The CEDC faculty and student leaders created a Continuity of Operations Plan (COOP) in early March of 2020, which was put into effect on March 23 when classes resumed after spring break (Nejman, Malvoso, & Smith, 2020).

The course typically meets for two hours on Friday afternoons for a combination of lecture-based learning and team-based learning on projects; program directors meet throughout the week to help push projects forward and prepare for the next class. The COOP delineated a revised structure, where the first hour of the Friday course was lecture-based within teams, driven by and planned by students to include guest speakers on UNSDGs. The second hour of the class was conducted via group meetings within teams, facilitated by the student project manager for each project area. Detailed technical reviews on projects also occurred within teams and industry advisors were invited to participate and critique in ways that they would not always be able to do in a large, face-to-face course. 

Student Reflections

Reflections from students indicate that the earlier redesigns and the creation of the COOP were beneficial in providing access to high-quality engaged learning. These reflections included the following: 

“My worst fear was students giving up on their projects before the end of the semester…. By continuing our normal operations, just in an online setting, students remained engaged and were still able to hear from guest speakers, participate in discussions, and have directed feedback on their projects from management and advisors.” (Student Program Director)

“The [project] team was not going to be an easy turnover due to the heavy weekly lab presence, yet going online made us think further down the road with reading into more research and emerging technologies.” (Student Project Manager) 

“An aspect of CEDC that I have noticed over my time in the organization is the importance of adaptability. The needs of the communities that CEDC works with change all the time, and students learn to navigate those changes while still being able to reach measurable outcomes. . . . In many ways, this simulates the situations that we will see in our internships and jobs because real projects change all of the time.” (Student Project Manager)

Furthermore, students surveyed at the end of the spring 2020 semester indicated favorable responses.

Overall, how do you think the COOP transitioned our operations? Very Well/Well: 89%; Fairly Well: 11%; Poorly/Very Poorly: 0%

Do you think that your project made good progress this semester? Yes: 87%; No: 13%

Do you think your project is feasible? Yes: 96%; No: 4%

Do you think your project matters? Yes: 100%

Engagement in the Post-COVID World

Major disruptions often drive much-needed change. Remote and virtual teaching seemed inferior prior to the COVID semester. We now realize now that a re-evaluation will be advantageous for determining which components of project-based learning belong in a face-to-face setting and which work better in a virtual environment. Although the temporary Spring 2020 disruptions limited students’ ability to create lab-based or makerspace-based deliverables, students within the class and their student project leaders were forced to innovate and spend more time reflecting and planning rather than just doing. 

We would also recommend that other leaders consider improving project connections to UNSDGs. Focusing on global challenges is especially advantageous now. Complex issues are multifaceted and have wide ripple effects. We look forward to continuing to “make lemonade” as we all find the new normal. 

References

CEDC.  (2020). Clemson Engineers for Developing Countries. Clemson University, College of Engineering, Computing and Applied Sciences. Retrieved from https://cecas.clemson.edu/cedc

Division for Sustainable Development Goals. (2020). Sustainable Development Goals Knowledge Platform. United Nations Department of Economic and Social Affairs. Retrieved from https://sustainabledevelopment.un.org/ 

Nejman, A., Malvoso, V., Smith, R. (2020). Clemson Engineers for Developing Countries Continuity of Operations Plan (COOP). Retrieved from https://www.clemson.edu/undergraduate-studies/documents/cedc_coop_s20.pdf

Reflecting on Teaching Presence While Transitioning to Remote Instruction

Leyte Winfield, Shanina Sanders, and Chauntee Thrill

Spelman College, Atlanta, GA

The effort described here is informed by the Community of Inquiry (CoI) framework, which is created by the overlap of the teaching, cognitive, and social presences creates the framework. Within the social presence, students establish peer dynamics that promote productive dialog and learning. The cognitive presence characterizes a student’s ability to construct meaning from engagement with their peers and instructor. The teaching presence creates an environment that facilitates learning across cognitive and social presences. Here, we reflect on our strategies for providing direct instruction and facilitating intellectual engagement at Spelman College as we transitioned to remote learning in response to the COVID-19 pandemic. 

Our usual organic chemistry course is flipped. Students are required to prepare for in-person class sessions by reviewing online videos and readings and completing pre-class problems. In the classroom, students work in small groups to complete inquiry-based and problem-solving activities. Transitioning to remote learning prompted us to restructure the course in a way that both provided students the required content and allowed us to maintain a manageable workload. 

Winfield: Asynchronous/Synchronous Learning

My biggest obstacle in going virtual was letting go of fears related to academic integrity and the need to control every aspect of the course. From past experiences, I understood that I could not jump headfirst into teaching remotely. I took a step back to determine which activities to replicate and which learning activities to abandon. I turned to the students to identify the activities they believed were most beneficial in the weeks before COVID-19. It was also necessary to understand their fears about transitioning to a fully online experience.  Most of all, I wanted them to feel that they were co-creating the course with me. 

Based on the students’ input, the remote course featured asynchronous activities and a required synchronous session. The goal was to create a self-paced environment. Students met with me weekly in eight-member groups to work through problems. There were different time slots offered for the small groups, allowing students to select an option that fit their availability and time zone.  I was “flexible but forceful,” maintaining hard deadlines while utilizing cut-off dates for students who experienced issues. The extra time could be used at a student’s discretion and allowed assignments to be submitted after the deadline without penalty. Students were allowed multiple attempts on exams with reduced credit after the first attempt. They were given the option to skip the final exam, provided they were satisfied with their course grade. 

The first synchronous session did not go as planned. I anticipated that students would ask questions but was met with silence. I felt flustered during the silence, which made the hour seem longer than 60 minutes. Although students had activities we were to discuss during the synchronous session, I realized that more structure was needed to guide the time. Therefore, I used worksheets, accompanied by a 10-minute overview discussion, to structure the remaining sessions. 

Sanders: Synchronous Learning

Wrapping my head around teaching online was a big lift for me. My main concern was figuring out the most fluid transition for myself and my students. I wondered how to keep the course structure similar to that prior to COVID-19 and how to give exams.  Because the course was flipped, online activities were already in place, but I opted for synchronous instruction. The original class time was maintained, which was the preference of my students. The synchronous sessions, consisting of mini-lectures and problem solving, were recorded for students unable to meet during that time. 

The course requirements were adjusted to reduce the number of graded activities, consolidating weekly pre-class questions and post-class assignments. However, I wanted to ensure that students continued to make progress on the coursework and did not fall behind. I designed additional assignments to offer immediate feedback and triggers to help students pace their learning. I also provided flexibility with deadlines. Like Dr. Winfield, I allowed multiple attempts on exam questions and allowed students to use their textbooks. 

During the first week of remote learning, students seemed eager but had some anxiety about the transition. They were very encouraging, expressing that “this is a new experience to get through together.” Attendance and energy were initially high, but they both decreased as the semester progressed. Similar to what I have observed in the in-person setting, some students go further into the materials, attend office hours, and answer questions unprompted, while others try to disappear into the background. I found it more challenging to engage with the latter group online. In the future, I will require small-group meetings throughout the course of the semester to encourage engagement, and use online forums to stimulate student questions and discussion.

Responding to Current Events

We both are engaged in a project to further develop students’ science identity, ensuring they understand their role and the relevance of science in addressing the problems they see in society. During the transition, we both utilized activities to enhance students’ ability to analyze and critique chemical data related to real-world issues. The activities, which include case studies and the deconstruction of research articles, focus on exploiting functional groups to synthesize drug, and explaining their efficacy.

Dr. Sanders’ students analyzed selected portions of a research article pertaining to development of new opioid analgesics with reduced side effects. The discussion of opiates was a part of the course before COVID-19. The topic is also relevant to the pandemic as practitioners search for ways to address chronic pain experienced by COVID-19 patients. Questions related to stereochemistry, functional group manipulation, and isolation techniques allowed the students to connect this topic to their coursework while learning about how computational modeling can lead to structure-based optimization. For example, students were able to see how the lead compound from computational analysis was manipulated in terms of stereochemistry to improve potency towards a designated receptor and how addition of a hydroxyl group could aid in docking via hydrogen bonding.

Dr. Winfield utilized Foundations of Organic Chemistry. The resource features a series of case studies entitled, “Who Gives a Darn,” that illustrates the application of organic chemistry concepts to understanding the development and synthesis of drugs. Throughout the semester, the case study presents students with drugs that contain a functional group currently being discussed in the course. For instance, students link the nucleophilic acyl substitution reaction to the formation of the drug Zoloft®, and the formation of hemiacetals to the metabolism of codeine. 

Exam questions were used that explored the structure of drugs that are under clinical trial for the treatment of COVID-19, remdesvir and lopinavir. The original questions were created to focus on spectroscopy in the organic chemistry classroom. These were modified to ask students to (1) identify the carboxylic acid derivatives present in the molecules and  (2) characterize the intermolecular forces experienced by the molecules. Students were also asked to explain the role of hydrolysis in the metabolism of the drugs.  

Lessons Learned

In teaching online, it is important to tailor the course so that the activities planned are necessary for content mastery and for achieving the desired level of rigor. Faculty should be patient with themselves and their students. They should be open to refining their strategies to create a more effective course. The current crisis is an opportunity to remind students of the relevance of science in society. The course activities described that relate to current events helped students see the role of organic chemistry in addressing a health crisis. However, we recognize the emotional toll of the pandemic, and we caution against overindulgence in the topic. 

References

Anderson, T., Rourke, L., Garrison, D. R., & Archer, W. (2001). Assessing teaching presence in a computer conference environment. Journal of Asynchronous Learning Networks, 5(2), 1–17.

Bucholtz, E. (2016). Foundations of Organic Chemistry. Hampton, NH: Pacific Crest.

Collins, S. (2020). COVID-19 Response: Chemistry Concepts and Media Communication, Lawrence Technological University. Email correspondence.

Manglik, A., Lin, H., Aryal, D. K., McCorvy, J. D., Dengler, D., Corder, G., . . .  Shoichet, B. K. (2016). Structure-based discovery of opioid analgesics with reduced side effects. Nature, 537(7619), 185–190. https://doi.org/10.1038/nature19112

Practicing and Simulating Social Distancing

Davida Smyth and Anne Yust

Eugene Lang College of Liberal Arts at The New School, New York, NY

We are faculty in the Department of Natural Sciences and Mathematics at Eugene Lang College of Liberal Arts at The New School, a nontraditional university located in Manhattan, NY. We had planned for Anne, an applied mathematician, to be a guest instructor for a two-week modeling module in Davida’s course, Evolution, Mutation, and Computation. Davida had previously introduced students to the digital evolution platform Avida-ED (https://avida-ed.msu.edu/). Anne’s task was to explore modeling and simulation more generally in four 100-minute class sessions. She intended to introduce NetLogo (Wilensky, 1999), an agent-based modeling platform, and show how it could be used to explore evolution. 

We completed the first week of the module before our institution moved classes online due to the COVID-19 pandemic. Anne worked with the students, in person, to create a simulation of bacteria growth in NetLogo. For the next class period, Anne adapted a book chapter we wrote, “Simulating Bacterial Growth, Competition, and Resistance with Agent-Based Models and Laboratory Experiments” (2020), to create a scaffolded tutorial for students to work up to simulating mutation and competition over the next three sessions. The students worked on the first section of this tutorial during the second class period. The risk of infection while commuting on public transportation was on our minds, and so Anne participated via Zoom while the others were in the physical classroom. The session yielded mixed results; the combination of in-person and online instruction proved to pose additional challenges. Davida was able to help troubleshoot in the classroom, but it was difficult for Anne to assist students virtually with the mathematical portions of the tutorial. 

The second half of the module occurred after a two-week hiatus from classes—one week for spring break, the other for instructors to prepare for the transition to online courses—and was completely online. By this point, the coronavirus had totally absorbed the minds of our NYC-based students, so we decided to abandon our original plan and focus on simulating relevant aspects of COVID-19. We discussed this change in advance and agreed that this would still meet the stated student learning objectives: compare and contrast the functionality of AvidaEd and NetLogo; identify the components of a model and describe how models differ from simulations; describe the limitations and constraints of models when describing biological phenomena; construct simple models to examine biological phenomena. The biological phenomena considered were shifted from evolution and mutation to the spread of infectious disease.

In the first session after the break, Anne explained to the students how to model the spread of infectious disease using the classic Susceptible-Infectious-Recovered (SIR) model and discussed variants of the SIR model. Then, Anne walked the students through the creation of a basic simulation of the spread of infectious disease with NetLogo by sharing her screen via Zoom while the students followed along. Students could have the NetLogo platform open next to the shared NetLogo screen, which was ideal, since it allowed students to reproduce the actions Anne was performing.

On the last day of the revised module, we briefly discussed the concept of social distancing, of which students were already very aware. Anne designed a simulation in NetLogo (Yust, 2020) that was based on the simulations displayed in a Washington Post article by Harry Stevens (2020), along with a tutorial that would allow the students to explore the effect of social distancing on the spread of infectious disease. Anne shared the simulation and tutorial with the students via a Google Drive posted to Canvas. The tutorial was a Google Doc, where Anne instructed students to make a copy of the document, then save it to a folder located in the Google Drive. We used breakout rooms, dividing the students into groups of two or three to work on the tutorial, responding to a series of prompts that were integrated into the tutorial. We gave the students 45 minutes out of the 100-minute class period to complete the tutorial, then they returned from the breakout rooms. At the end of the tutorial, Anne had written some reflection prompts, including a question about the limitations of the model, which we discussed in detail for the remainder of the class. Students were actively engaged with the discussion, including personal anecdotes about the (lack of) social distancing they’d seen around the city.

As part of the course, students were tasked with designing an experiment that used Avida-ED to demonstrate an evolutionary concept of their choosing. One group asked to use NetLogo instead for their project. This group used the code Anne had provided and modified it to include additional elements of the built environment in the model such as buildings, cleaning regimens, and even vaccinations. The group also produced slides and a companion that could be used to educate other students in the use of their modified model. The students in the group had taken Davida’s SENCERized research course, The Microbiome of Urban Spaces, and were working with her on research projects looking at the role of the built environment in the spread of antibiotic-resistant bacteria. Another student in the group had taken Anne’s first-year seminar class where they used NetLogo to simulate a variety of social and physical phenomena. It was fascinating to see the students make connections to their other courses, while integrating the knowledge they had gained through their research experiences. One of the students remarked:  

“How do you design spaces around an infectious disease?  . . . It’s helping us understand the way that you can look at something that’s affecting the whole world right now in the classroom” (The New School, 2020).

Through this adapted learning experience, we encountered social distancing on multiple levels—academically through the actual simulation and tutorial and personally through the gradual transition to distance and online learning. Though the social distancing was trying for all of us, the academic context helped students understand its importance in slowing the spread of the disease. The synchronous online class time provided an outlet for students and faculty alike to lessen the social distance, while maintaining the physical distance necessary for public health.

References

Avida-ED. Retrieved from https://avida-ed.msu.edu/. East Lansing, MI: Michigan State University.

Stevens, H. (2020, March 14).Why outbreaks like coronavirus spread exponentially, and how to “flatten the curve.” The Washington Post.  Retrieved from https://www.washingtonpost.com/graphics/2020/world/corona-simulator/.

The New School. (2020). Sparking new connections. Retrieved from https://ww3.newschool.edu/new-approaches/story/sparking-new-connections/

Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Evanston, IL: Center for Connected Learning and Computer-Based Modeling, Northwestern University. 

Yust, A. E. (2020). Social distancing simulation in NetLogo. QUBES Educational Resources. doi:10.25334/VGNS-9N09

 Yust, A. E., & Smyth, D. S. (2020). Simulating bacterial growth, competition, and resistance with agent-based models and laboratory experiments. In H. Callender Highlander, A. Capaldi, & C. Diaz Eaton (Eds.), An introduction to undergraduate research in computational and mathematical biology: From birdsongs to viscosities, pp. 217–271. Cham, Switzerland: Birkhäuser; eBook https://doi.org/10.1007/978-3-030-33645-5.

 

Incubating the SENCER Ideals with 
Project-Based Learning and Undergraduate Research: Perspectives from Two Liberal Arts Institutions

Abstract

Maintaining undergraduate interest in STEM is a formidable challenge. Numerous studies have reported that structured, authentic research experiences in the classroom increase retention rates and introduce students to the skills needed to conduct independent research as upperclassmen and beyond. Most importantly, these strategies are inclusive, enabling all students, regardless of their backgrounds, to be exposed to and involved in research. However, few reports are available on the efforts of SENCER faculty to grow and support inclusive undergraduate research at small liberal arts institutions. Here we describe approaches being taken and challenges being faced by SENCER faculty at two liberal arts institutions while they strive to achieve the SENCER ideals and to promote civic and scientific engagement at their institutions through research and project-based learning. 

Introduction

Classroom-based Undergraduate Research Experiences (CUREs) and Project-Based Learning (PBL) have been shown to enhance the career development and readiness of students and can substantially impact retention in STEM disciplines (e.g. Strobel and van Barneveld, 2009; Bangera and Brownell, 2014; Jordan et al., 2014). CUREs and PBL are inclusive, exposing a greater number of students to high-impact experiences (Bangera and Brownell, 2014). Projects can also be designed to generate meaningful data that can inform further student research projects as well as the research agenda of the faculty member (Shortlidge, Bangera, and Brownell, 2017). 

At Mercy College and Young Harris College (YHC), the faculty define PBL as a teaching method in which students gain knowledge and skills by working for an extended period of time to investigate an authentic, engaging, and complex question, problem, or challenge (Eberlein et al., 2008) and a CURE course is one in which students are expected to engage in science research with the aim of producing novel results that are of interest to the scientific community (Corwin, Graham, and Dolan, 2015). We use an inclusive definition of undergraduate research (UGR) here as being an inquiry or investigation conducted by an undergraduate student that makes an original intellectual or creative contribution to the discipline. 

With careful and thoughtful design, these experiences can help students gain exposure to research while enhancing their critical thinking, communication, and quantitative reasoning skills (Auchincloss et al., 2014). Providing authentic experiences also improves student confidence, motivation, and attitudes about research in comparison to “cookbook” labs (e.g. Brownell, Kloser, Fukami, and Shavelson, 2012; Brownell et al., 2015), which can prompt greater retention in traditionally challenging disciplines. For instance, students in an open-ended research laboratory course reported greater project ownership and a desire to discuss materials and collaborate with other students, in contrast with students who followed predetermined lab protocols from a manual (Brownell et al., 2012). A CURE approach also significantly increased the likelihood that undergraduates would want to pursue independent research (Brownell et al., 2012) and their ability to correctly analyze novel datasets during exams (Brownell et al., 2015). Numerous models and resources to implement CUREs and PBL have been described, and there are several faculty and institutional networks that encourage and foster collaborative experiences between students and faculty to tackle real-world problems. CUREnet: Course-Based Undergraduate Research Experiences (https://curenet.cns.utexas.edu) hosts a plethora of CURE examples and a detailed compendium of funded projects (with faculty contact information, objectives, and lab overviews). SEA-PHAGES: Science Education Alliance – Phage Hunters Advancing Genomics and Evolutionary Science (https://seaphages.org) is designed to isolate new viruses from soil samples and expose undergraduates to research methods in microbiology, genomics, bioinformatics, and evolutionary biology. Two antibiotic discovery networks, the Small World Initiative (http://www.smallworldinitiative.org) and Tiny Earth (http://tinyearth.wisc.edu) task students with isolating bacteria from soil samples to screen for antibiotic production and resistance while promoting science literacy and training in microbiology, molecular biology, and genetics lab techniques. 

The learning outcomes of CUREs and PBL clearly overlap with SENCER ideals. Both invoke complex, open-ended problems that challenge students to recognize the limits of scientific knowledge and apply quantitative reasoning to address global issues. These key learning outcomes will help us improve civic and scientific literacy among our students, which we define as literacy that deals with  accessing and assessing basic scientific constructs required to generate informed public policy decisions involving science and technology. By first understanding the relevance of wicked problems and then striving to solve them, students construct skills for independent learning, develop intrinsic motivation, and are prepared to be engaged 21st century citizens. At both institutions, we are scaffolding the experiences and approaches throughout our curricula so students gain relevant training that can be reinforced as they progress towards capstone courses and independent research. While students from Mercy College and YHC have not directly interacted, faculty from both institutions have recognized overlapping goals regarding the implementation of UGR at small liberal arts institutions. This has led to ongoing discussions during SENCER meetings between the schools to build on existing initiatives. Given their different demographics and mission statements, we felt that contrasting approaches undertaken by both institutions would illustrate unique strengths and challenges associated with implementing pedagogical reform within diverse liberal arts environments.

Leveraging SENCER at Two Small Liberal Arts Institutions

Mercy College is a federally designated Hispanic Serving Institution with about 6300 undergraduate students, 62% of whom are underrepresented ethnic minorities (UMs), with three main campuses in the Bronx, Manhattan, and Dobbs Ferry. Admission to Mercy is SAT/ACT optional. The biology program enrolls approximately 250 students and attracts a high percentage of UMs. Many are transfer students, of nontraditional age, and/or commuters, and the majority receive federal Pell grants. In the biology major, many students hail from high-needs high schools, are of first-generation college status, and/or care for a dependent. 

National data trends show that the biology program has had a substantially higher attrition rate at Mercy than at colleges with similar admission standards. When asked, most often Mercy students have concerns regarding the biology major; worries about getting a job post graduation, about the impact of negative course outcomes on their GPAs, and about the workload associated with STEM courses (both the rigor and extent of work required). Analysis of our students has shown that they are most often transferring to majors that they perceive to be less arduous (psychology and health sciences), regardless of whether or not they are, in fact, less difficult. While there are great opportunities for students to engage in research in upper-division courses, we tend to lose students in their first year, since many students fail or fail to continue introductory biology and chemistry courses. This indicates that our efforts need to target the introductory sequence and improve our pedagogy and outcomes therein.   

Our concerns about student success and retention in STEM majors like biology have led to major efforts within our college, our school, and the Natural Sciences Department. The Maverick Success Toolkit (a college-wide initiative of our President Timothy Hall is targeting “High-Impact Practices, including undergraduate research” (AAC&U, 2008). In Natural Sciences, the high-impact practices (HIPs) we are focused on includ CUREs and PBL, which address key program outcomes for the biology program at Mercy, include students being able to (a) critically examine basic, applied, and societal problems in the biological sciences and through the lens of life sciences professionals, (b) propose problem-solving strategies to address these problems, and (c) work as effective team members on collaborative projects. By engaging our students in collaborative projects and improving their problem-solving strategies with PBL and CUREs, we could reach our desired programmatic outcomes. Other initiatives and activities supporting the growth of UGR at Mercy include regular Faculty Seminar Days, when all faculty across the college participate in faculty development, a Council of Undergraduate Research (CUR) site visit, a monthly seminar series featuring local researchers, a yearly STEM day open to local high schools, and regularly co-hosting the Westchester Undergraduate Research Conference with Manhattanville College. 

Young Harris College is a rural, residential, Methodist-affiliated liberal arts institution with just under 1,000 undergraduate students, over 80% of whom are white. The vast majority (93%) of students are Georgia residents, with an average SAT score of 1083 in 2017. Biology is consistently one of the top majors at the institution, comprising 15–18% of the total declared majors in a given year. As at Mercy, there is a drop in declared majors following the introductory biology and chemistry sequence, as they are perceived to be challenging courses. 

YHC has a mixture of established initiatives in place to promote UGR and scholarship among upperclassmen. Biology majors are primed for research via a two-semester course sequence on experimental design and analyzing scientific literature. In their senior year, majors can choose between conducting an independent research project or a literature review. Only about a third of majors conduct research projects, and students who elect to do research typically spend one semester on the project before presenting it as a senior capstone. The college holds an annual campus-wide Undergraduate Research Day, which provides students the opportunity to present original research in a low-stakes environment. The Biology Department also provides travel stipends to students who conduct UGR to present findings at the annual Georgia Academy of Sciences meeting, but travel by students to national conferences is less common.

 YHC has had a minor SENCER connection since transitioning from a two- to a four-year institution in 2008, including a site visit and an interdepartmental team trip to a SENCER Summer Institute. However, campus-wide knowledge of SENCER is low, even though several faculty members actively promote civic engagement in their classrooms. Many of these initiatives are conducted independently, without extensive intra- or inter-departmental knowledge of the projects. This issue stems from a high teaching load and limited course release options, reducing the ability of faculty to apply for fellowships and grants.

What we have done at Mercy 

Currently our efforts are focused on making UGR more inclusive. One approach is to integrate research across the curriculum, thereby serving more students. Particular focus has been placed on engaging students earlier on in the curriculum such as in introductory courses. Internal funding from Mercy has been directed towards the CURE project, to help the faculty attend professional development opportunities such as the PBL Institute at Worcester Polytechnic Institute (WPI) and to bring experts to the campus, including Dr. Monica Devanas of SENCER. A new position, the Undergraduate Research Coordinator, was created in the department to support UGR. Figure 1 shows our progress towards the incorporation of CUREs or PBL across the curriculum. To reach across the disciplines and to break down the discplinary silos, our approach to defining research has been broad and inclusive, and we have included aspects of the research process (literature reviews, poster presentations, designing experiments in silico) in our scaffolded approach. Here are some examples of our SENCERized efforts across the curriculum:

At the General Education level

Students in the Environmental Science class for non-science majors self-assign into teams and engage in student-chosen and student-driven projects aimed at solving environmental problems visible and meaningful to the Mercy community. At the end of the semester, they present proposals to solve a particular problem. In Fall 2016, students surveyed the college community on recycling, and generated an interdisciplinary proposal to reduce plastic use in the Mercy cafeteria. It was presented to the Mercy administration and helped make the case to reduce plastics in the cafeteria. 

At the Introductory Level

In General Biology 1, students choose to research topics of civic and scientific importance relevant to the biology course (climate change, emerging infectious diseases, GMOs). The students generate posters, and learn how to cite and produce a bibliography. Librarians help us print and present the posters in the library and we hold poster sessions in public spaces, such as the corridor outside the labs, allowing the greater community to witness and engage with student work. 

General Chemistry 1 also involves public poster presentations of the students’ work. The projects are constructed around the theme of isotopes and nuclear chemistry, and students choose a project topic linking nuclear chemistry to societal issues such as radioactive accidents, global warming and evolution. As with biology, the students work in teams and are peer-assessed on their teamwork. The General Chemistry laboratory has also been redesigned to include a project, the theme of which centers on connecting acid-base chemistry to commercially available antacids. Antacids provide a perfect entry point for freshman students to understand the concepts of acids and bases and their relevance to health and biology. Students generate their own hypotheses to test, and in consultation with the instructor, design experiments, collect and analyze data, and submit a comprehensive lab report on their project. 

Introductory Physics is a two-semester sequence, with embedded exploratory laboratory modules. It is project based, with students posing their own inquiries and making inferences based on analysis of their own data. Initially, student inquiries focus on biomechanics with emphasis on experimental design and collaborative execution. Then, inquiries expand to the physical mechanisms underlying biological processes, normal and impaired physiological functioning and/or medical diagnostics and treatment. Every student creates an ePortfolio of their final project work, which is viewable by the entire college community. Students self-assess and peer-assess their progress, and final projects are used to evaluate their competence in their inquiry, modeling, quantitative analysis, and communication skills.

At the Intermediate Level   

We’ve previously reported on the development of a SENCERized elective CURE course called the “Microbiome of Urban Spaces” (Smyth, 2017), which began in Spring 2016. The microbiology lecture course was also redesigned to help students be more civically engaged using PBL. Students were instructed in aspects of policy and regulations (clean air and water acts, the EPA), health care disparities, and the rise of antibiotic resistance. They prepared educational materials (brochures, infographics, posters) that would be accessible and promote awareness of various topics of civic import in their communities, such as antibiotic-resistant bacteria in food, climate change, and emerging infectious diseases such as Zika. 

PBL was introduced in the Organic II lab curriculum in the Fall of 2017. The topic chosen was sunscreens, as they are organic compounds that absorb solar radiation and can minimize UV damage or sunburn. Recently Hawaii banned sunscreens containing oxybenzone and octinoxate as active ingredients (these ingredients have a high sun protection factor). Divers use these on their faces, but the compounds are insoluble in water and can cause coral bleaching and disruption of marine ecosystems. The topic has societal implications and would appeal to students going into medical fields, as it links the study of organic chemistry to cancer, a topic usually restricted to biology students. Students chose to analyze the different active ingredients present in commercially available sunscreens to measure their UV absorbance/antioxidant properties. Currently the students are synthesizing organic compounds and are going to evaluate these for sunscreen properties. 

At the Advanced Level

Our efforts at the introductory and intermediate levels have prepared students for more advanced research experiences in developmental biology, neuroscience, and in a new “Research in Biology” course. The capstone course has also been redesigned from a literature review course to an authentic lab-based research course in which students can conduct independent projects. Faculty who work with students on independent projects have benefited from students progressing through the scaffolded curriculum, as these students are more confident, capable, and dependable in the lab. Their successes at conferences and meetings and acceptances to prestigious Research Experiences for Undergraduate programs (REUs) and internships support these observations. Student presentations at local conferences (such as the Westchester Undergraduate Research Conference, the SENCER SCI Mid-Atlantic Meeting, and the Metropolitan Association of College and University Biologists Conference) have increased from one in 2012/2013, two in 2013/2014, three in 2014/2015, nine in 2015/2016, six in 2016/2017, 28 in 2017/2018, and 11 in 2018/2019. There were no student presentations at national/international conferences (such as ABRCMS, ASM, SACNAS, and CSTEP) from 2013–2015, but there were eight student presentations in 2016/2017 and four in 2017/2018. Students have also increasingly been rewarded for their work with poster awards at CSTEP (in 2017 and 2018), travel awards to attend ABRCMS (in 2016), and an ASM Capstone award (in 2017), and they have been accepted to prestigious REUs for the first time in many years, such as SURP at Albert Einstein (in 2017), SURP at Rutgers (in 2018), and at SURP at NYU (in 2018). One of the most significant changes is the increase in chemistry-focused research involving undergraduates at Mercy, which had been stagnant for many years. 

What We Have Done at YHC 

The teaching load at YHC provides challenges and opportunities for incorporating SENCER ideals across the curriculum. In biology, most courses are developed without substantial input by other faculty. Faculty who choose to implement novel pedagogies are encouraged and have free rein to do so. However, the benefits of these designs can go unnoticed by administrators or colleagues unless explicitly promoted. In recent years, subsets of the division have applied for educational grants (e.g. NSF S-STEM) but have not received an award thus far. Therefore, although financial support for developing a cohesive departmental initiative is minimal at present, a scaffolded, SENCERized curriculum is certainly feasible in the future.

At the General Education and Introductory Levels

Arguably the area of greatest need for promoting civic engagement and scientific literacy at YHC is within non-majors courses, as these students generally fail to see the relevance of or are disinterested in biology. Similar trends have been observed at other institutions (e.g. Cotner, Thompson, and Wright, 2017). To combat this, one non-majors course (Exploring Life) was redesigned to promote the civic value of biological literacy in addition to content-related learning objectives. Instead of a traditional exploration of molecular biology, genetics, and evolution, these concepts were built into a modular approach. Each module was selected by students and used four weeks to explore a critical biological issue, such as epidemics, vaccinations, GMOs, or the antibiotic resistance crisis. Whenever possible, community connections were brought into each unit to promote a civic outlook in the topic, such as instilling awareness of disease agents on campus or considering the prevalence of GMOs in local markets. One unique element of the Exploring Life redesign was that students in the course were offered a choice between six potential modules at the beginning of the semester, of which the three topics with the highest number of votes were used as topics for the course.  This design provides greater flexibility to other instructors, as they can select which six modules they are most comfortable offering each semester, or they can develop a new panel of modules to add to the course portfolio, provided that they meet established content guidelines. 

 During redesign for non-majors biology, a concerted effort was made to expose social challenges, embrace statistical analysis, and analyze peer-reviewed articles using established, student-centered teaching practices. Final projects for each theme were designed to promote scientific communication to non-scientists, such as designing a board game to illustrate how viruses spread through a community, or constructing a college flyer to highlight contributors to antibiotic resistance. Labs used an inquiry-based approach to demonstrate modern research techniques, although more structure was provided in comparison to recently redesigned open-ended labs in majors’ introductory biology courses. Some lab modules were based on previously established CUREs (such as Tiny Earth), while others were developed following workshops with Research Experiences in Introductory Laboratories (REIL)-Biology.

Our non-majors chemistry course also explores subjects that enhance student awareness of globally relevant topics, such as green chemistry. Introductory courses at the majors level are moving towards student-centered practices, but arguably lag behind efforts at the non-majors level. The degree of active learning within a section of introductory biology varies widely depending on the instructor of record; however, groups of faculty have collectively restructured lab activities to include inquiry elements, including a multi-week student-designed authentic research project for our introductory organismal biology course.  

At the Intermediate and Advanced Level

In addition to department-wide initiatives to reinforce scientific literacy and training for biology majors (see examples in the institutional profile), most faculty promote a student-centered teaching environment to some degree, such as utilization of kinesthetic models in cellular biology, analysis of public environmental science data, preparing students for the workforce by utilizing discipline-relevant, open source statistical software (e.g. the R Project), and flipped classrooms. When possible, YHC faculty tie course content into their own research interests or connect topics to the rural, montane environment where our campus resides. Many YHC students hail from the Atlanta suburbs, and finding ways for them to connect to the YHC community is critical for retention.   

Over the past five years, the majority of biology faculty teaching upper division courses have shifted from “cookbook” labs to incorporate greater inquiry-driven pedagogical approaches. The rationale for this is twofold. First, group-based projects prime sophomores and juniors for the rigors of independent research, and second, concepts illustrated in previous courses on experimental design and statistics can be reinforced. As an example, half of our Invertebrate Zoology labs were removed last year to make room for a student-designed project on chemoattractants to beehive pests. This project tied into the YHC community, as we have established beehives and an annual course on beekeeping that is among the most desirable courses on campus. Students wrote a proposal and budget, managed the project, designed a scientific poster, and orally defended their research one-on-one. The end product was of sufficient quality to be presented on campus during YHC’s Undergraduate Research Day. Projects of similar complexity can be found among many upper-division science courses at YHC, but this is a bottom-up movement by faculty who see the value in reinforcing research methods and/or SENCER ideals in their courses. Table 1 demonstrates how these activities across the curriculum synergize between Mercy and YHC. 

Student and Faculty Benefits and Successes

We’ve demonstrated that there are many ways to bring research to our students. By scaffolding research across the curriculum at Mercy, we enable our students to gain the skills and experiences they need at several stages throughout their academic careers, and across multiple disciplines including biology, chemistry and physics. This cross-disciplinary approach, spanning introductory to advanced courses, ensures that their learning is reinforced through multiple and varied exposures to research and authentic questions/projects that are of interest to them. At YHC, faculty are supportive of one another’s efforts to incorporate research in the classroom. There has been minimal resistance to this approach, although greater communication and institutional support is needed at this time to transition from independent efforts to a cohesive, scaffolded approach that reaches across the curriculum.

What did we find at Mercy? 

Feedback from our students enrolled in these modified courses has demonstrated that the students themselves feel that they have benefited in the areas of teamwork, communication, and in their appreciation of the course and of science in general. Many Mercy faculty have now adopted the SALG as a means of assessing student perceptions of their own learning. Students in microbiology reported “the projects were great, especially the microbe Digication project. I heard from past classes that they just wrote a paper for a project grade and I much preferred the Digication project that my class did.” Digication is an online platform for electronic portfolios (DIGI[cation], n.d.). A chemistry student commented, “I think working as team with my peers and professor was great because we all learned from one another and each made great suggestions that contributed to the success of our project,” and a physics student wrote, “Having the whole semester for a project of our choosing gave us the power to pursue our interests while learning physics instead of focusing on memorizing formulas and regurgitating ideas.” Faculty themselves are enjoying teaching the courses and having more engaged students. 

A barrier that remains for us is a means to assess the specific gains in the areas of civic engagement and scientific literacy. We are currently focused on developing assessment tools and metrics for determining our impact across the curriculum. Despite this we have demonstrable evidence of student successes both in the classroom, outside the classroom, and beyond, after graduation. Since Fall 2016, more than 40 students have participated in the Microbiome of Urban Spaces CURE, resulting in more than 27 posters and presentations at local, national, and international conferences by Mercy students. A pilot of the URSSA survey (Westin and Laursen, 2015) in Spring 2018 demonstrated that students are considering graduate school after participating in this CURE (Table 2). Additionally, participants have received honorary mentions, research fellowships, and travel awards from the Collegiate Science and Technology Entry Program (STEP), Society for Advancement of Chicanos/Hispanics and Native Americans in Science (SACNAS), American Society for Microbiology (ASM), and Annual Biomedical Research Conference for Minority Students (ABRCMS), and several have been accepted to research-intensive internship programs such as at Albert Einstein, NYU, and Rutgers. 

We’ve also increased the numbers of engaged and interested faculty. We started with eight engaged faculty and have grown to include more than 20, including visiting and adjunct faculty. While it is too soon to determine if we are affecting the graduation or retention rate, the number of students enrolling in the biology major has increased to 236 in Fall 2017 (3.5% of total Mercy College enrollment, 22.8% of the School of Health and Natural Sciences) compared with 216 in 2017 (3% of total Mercy College enrollment, 20% of the School of Health and Natural Sciences) and 213 in 2016 (2.7% of total Mercy College enrollment, 18.8% of the School of Health and Natural Sciences). 

What Did We Find at YHC? 

Early feedback from the redesigned non-majors biology course is encouraging. We are using the Student Assessment of their Learning Gains (SALG), Test of Scientific Literacy Skills (TOSLS; Gormally, Brickman, and Lutz, 2012), and the Colorado Learning Attitudes about Science Survey for Biology (CLASS-BIO; Semsar, Knight, Birol, and Smith, 2011) instruments to track whether the redesign has affected non-majors’ views on their ability to conduct scientific research, interpret it, and apply it to their lives, although post-implementation data are still being generated. Informal feedback confirms that students (a) appreciate that course material is relevant to non-scientists, (b) overcome misconceptions about the scientific method, and (c) apply a global outlook regarding solutions to the challenges associated with each topic.

 One assignment clearly illustrated that the SENCER approach promotes biology as a globally relevant topic to non-majors. Pre-course surveys suggested that most students had not considered the socioeconomic or biological challenges associated with disease. While discussing HIV/AIDS, Dr. Sheryl Broverman’s work with WISER was used as an example of an initiative that grew to have a huge impact. Students were tasked with writing a reflective response after investigating the WISER NGO. Their submissions illustrated how their perceptions of the world had changed over just a few months. As two examples:

 “People like Dr. Broverman are impressive and can make a big difference…what would happen if all of the privileged people could help all of the non-privileged people?” and “I am so impressed by the efforts [of WISER] that I plan to pitch this NPO as my sorority’s next philanthropy. While I am aware that the dent that a small-town sorority is able to make may not be huge…I have held steadfast to the idea that small changes can be monumental.”

As the course has progressed, these sorts of reflections have become more commonplace. What is needed at this stage is to expand on this vision for non-majors and apply it to majors-level courses. If students can be motivated early on and if faculty receive support for classroom initiatives, YHC could promote active research opportunities continuously throughout the major. 

Recently, several STEM faculty have engaged in pedagogical research and civic engagement endeavors, resulting in travel awards and presentations at national educational conferences, including the SENCER Summer Institute (SSI), Association for Biology Laboratory Education (ABLE), American Society for Biochemistry and Molecular Biology (ASBMB), and National Association of Biology Teachers (NABT), where two faculty were trained on CURE development through the Research Experiences in Introductory Laboratory in Biology (REIL) program. These faculty represent a minority at YHC, but there is a growing interest in building interdisciplinary connections among disparate majors. 

Future Directions

While we have been able to champion “SENCERized” CUREs and PBL at our respective institutions, for many faculty, there remain several considerable barriers and challenges. What these challenges are, and where and when they arise, can often impede buy-in among reluctant faculty and administration. Despite the challenges, there are several strategies that we have used to achieve buy-in:

  • Show the data – One of the most successful strategies to encourage your colleagues to participate or gather administrative and financial support is to show the results of your efforts. Take every chance to present your efforts at departmental meetings, school meetings, conferences, and in journals such as this one. Even preliminary data can serve to bolster your argument for your efforts and can greatly serve to encourage others to join you. We have presented our ongoing efforts to the broader community at SENCER meetings and at Project Kaleidoscope (PKAL) and Quantitative Undergraduate Biology Education and Synthesis (QUBES) meetings. These efforts not only help us identify allies at other schools and institutions, but also help our colleagues who may be struggling to find ideas, methods, and strategies for success. Communication between faculty at Mercy and YHC is one such example of the community building that can occur by sharing one another’s efforts through SENCER. In the case of this particular project, D. Sieg and D. Smyth met as new attendees to the 2014 SENCER Summer Institute (SSI) in Asheville and saw mutual alignment in their pedagogical interests. They built on these connections over the years, leading to collaborations for SSI workshops and Leadership Fellow opportunities. These initial connections led to recruiting more faculty into the fold, culminating in this article.
  • Program Assessment – At Mercy, we have strategically placed PBL and CUREs at the forefront of achieving our programmatic goals. Tying PBL and CUREs to program outcomes can serve as a means of directing funding towards the efforts. Better yet, there can be direct funding and support when PBL and CUREs are tied to assessment, including expertise from assessment coordinators for generating tools and rubrics to help measure impact. 
  • Provide the support – If you are an administrator or dean, consider providing technical support for your faculty. Even small amounts of money can make all the difference when considering these types of projects. Fund opportunities for your faculty to attend workshops and training sessions. Better yet, consider lines that support the efforts directly. Hire technical staff, or train graduates of the program to support the efforts.  
  • Support Scholarship of Teaching and Learning (SOTL) for promotion and tenure – An effective way to both support and encourage faculty is to align promotion and tenure expectations with Boyer’s model, which places value on SOTL (Boyer, 1990). Many teaching institutions lack adequate research facilities for faculty to engage in high-impact research analogous to what they conducted during their PhD and postdoctoral training. When the practice of implementing and assessing evidence-based and effective pedagogy in the classroom is valued and is tied to promotion and tenure, faculty will also benefit from engaging in these types of efforts.
  • Build community from within – Often, the greatest support for new initiatives comes from one’s peers. Upon our return from WPI, Mercy gathered as a learning community to continue the efforts to develop PBL. While this was not always fruitful (we often could not meet due to scheduling, and we differed in our approaches), it reinforced a common language and helped continue the momentum of our efforts beyond WPI. Recent efforts by YHC opened doors between departments by providing a forum for “Lightning Talks” where faculty can promote classroom initiatives to colleagues in a low-stakes setting. 
  • Bring the support to you – A more successful and inclusive approach was to bring the support to us. Our second collaborative community at Mercy involved Monica Devanas. She supported and bolstered our efforts to integrate CUREs into introductory courses by visiting the campus and using Skype to meet with us monthly. Her constant support and encouragement helped our CURE working group stay on track. We have also hosted Erin Dolan and CUREnet at Mercy in Spring 2018 and the Mid-Atlantic and New England PULSE network in October 2017. These efforts not only helped Mercy faculty develop curricula and innovate, but also helped support peers at neighboring institutions who are also dedicated to improving undergraduate education in STEM.
  • Leadership – To garner faculty collaboration and administrative support of initiatives, having someone with a SENCERized vision who takes on a leadership role can be invaluable. Someone with the resources and experience with pathways to curricular reform can seek out others with a similar outlook to start a collaborative effort, encourage the nascent interest in others to grow, and be poised to confidently provide the needed rationale to administrators. Having the support of the SENCER community (or other similar communities) can provide campus leaders with the tools, support, and confidence they need to help make a difference at their institutions. 

Despite our efforts, barriers and challenges remain. At many teaching-intensive institutions, the overreliance on contingent or adjunct faculty can be a barrier to implementing CUREs and PBL. At Mercy College the Department of Natural Sciences hires approximately 60 adjuncts each semester, to supplement 18 full-time faculty, teaching upwards of 200 sections. Often, these adjunct faculty are hired at the last minute and are insufficiently prepared or trained to implement high-impact practices (HIPs), and few if any have ever had any training in implementing or teaching PBL or CUREs. Having lectures and lab classes taught by different instructors (full-time or adjunct) can also cause difficulties, if students are not adequately prepared from lecture to be successful in the lab, and ensuring synergy of lab and lecture courses can be difficult. There are very few models available that address this issue. In Fall 2018, Mercy was awarded an Inclusive Excellence Grant from the Howard Hughes Medical Institute; among other things, the awardees aimed to develop an Adjunct Academy, the goal of which is to recruit, train, and retain adjunct faculty who will support teaching with PBL and CUREs at the college (HHMI, 2019). There are often small numbers of full-time faculty who make sustained efforts to incorporate HIPs, constraining efforts to expand and integrate these HIPs across the curriculum. By encouraging more full-timers to engage with SENCER and supporting them to attend the Summer Institutes and regional meetings, we can bring more full-time faculty to the table. 

Lab support and lack of time can be another major barrier. Faculty at teaching-intensive institutions often teach four or more courses a semester (such as at Mercy and YHC), and part-time faculty generally have no access to active research programs or laboratory space. Technical support is often lacking and graduate assistants or technicians may not be available, meaning faculty must prepare materials for these courses themselves. Our pilots were supported by grants and faculty awards, as well as with funding from our deans and administration that helped purchase reagents and provide technical support to faculty. While pilots may be feasible, sustaining funding may be a challenge.

Infrastructure remains a significant barrier for many faculty, as we often lack dedicated research labs or areas for group work. When courses are taught across several campuses or buildings such as at Mercy, access to research space to support the CURE can be an issue. At Mercy, we’ve rearranged the teaching schedule to accommodate access to laboratories for preparation to make the teaching laboratories available for research when class is not in session. At YHC, we recently renovated a classroom into a shared research lab for chemistry and biology. While the space is functional, it is limiting to have only a single space for all undergraduate researchers. Since Mercy had no room for the poster sessions, we bought boards and easels and did our poster session in the corridors outside the labs. Currently we’re trying to rearrange the available research space to make it more equitable and supportive of all faculty.

While a plethora of assessment tools are available for assessing the impact of CURE and PBL experiences on students (Shortlidge and Brownell, 2016), there are limited resources tailored to determine whether students make specific gains in SENCERized classes in the areas of civic engagement and scientific literacy. More tailored assessment tools could help faculty present a data-driven and evidence-based case for SENCERized approaches to the administration and faculty. 

About the Authors

R. Drew Sieg

R. Drew Sieg is an assistant professor of biology who recently transferred to Truman State University from Young Harris College. He is a SENCER Leadership Fellow whose traditional research interests examine chemically mediated ecological interactions among plants, fungi, algae, and herbivores. He is also increasingly involved in educational research, particularly examining how authentic research experiences and other novel pedagogies affect student engagement in STEM.

 

Nancy Beverly

Nancy Beverly is an associate professor in physics at Mercy College, in Dobbs Ferry, N.Y. Her pedagogical work focuses on the development of engaging and relevant curricular materials, activities, and approaches for the introductory physics for life science (IPLS) students. Her contributions to the national IPLS physics education community include organizing many national IPLS workshops and conference sessions, as well as being a part of multi-institutional collaborative NSF grants in this area. She is particularly interested in assessment and in guiding students to frame and investigate their own inquiries to make their own data-driven inferences. 

Madhavan Narayanan

Madhavan (Madi) Narayanan is an assistant professor of chemistry and a biophysical chemist at Mercy College. He is the Undergraduate Research Coordinator of the Natural Sciences Department and the Adjunct Academy Team leader for the Mercy Inclusive Excellence award from Howard Hughes Medical Institute. He uses both computation and experiments to understand structure and mechanisms in biological molecules. His current research interest is in developing and characterizing novel molecular probes which can serve as useful reporters of structure and dynamics in biomolecules and for applications in biological imaging. 

Geetha Surendran

Geetha Surendran is an associate professor of chemistry in the Department of Natural Sciences at Mercy College. She teaches general chemistry and organic chemistry. Her research focuses on sunscreens as well as on antioxidants from natural sources. Currently she is developing active ingredients to be used in sunscreen formulations for the UV as well as the blue light region. She is also involved in developing Course-Based Undergraduate Research Experiences (CURE) projects for General Chemistry students.

Joshua Sabatini

Joshua Sabatini is a new member of the faculty at Passaic County Community College and former instructor at Mercy College. His main work is leading students through all the finer points of general and organic chemistry. As a former organic chemist in the pharmaceutical industry he also seeks to pique students’ interest in chemistry through work in the laboratory. Joshua led the students through the general chemistry CURE-based lab at Mercy in Fall 2017.

 

Davida Smyth

Davida S. Smyth is an associate professor of natural sciences at Eugene Lang College of Liberal Arts at the New School in New York. She has previously served as associate professor and Chair of Natural Sciences at Mercy College. A SENCER Leadership Fellow, her research focuses on the genomics of Staphylococcus aureus, and the prevalence of antibiotic resistance in clinical and environmental strains of Staphylococci. She is also interested in pedagogical research in the area of student reading skills in STEM disciplines, classroom undergraduate research experiences and Peer-Led Team Learning in biology. 

Acknowledgments

The authors would like to acknowledge the hard work and diligence of the students and faculty at Mercy College and Young Harris College as well as their research collaborators at CUNY, Professors Jeremy Seto (New York City College of Technology), Avrom Caplan (City College), and Theodore Muth (Brooklyn College). We are grateful to the librarians at Mercy, especially Susan Gaskin Noel, Hailey Collazo, and Andy Lowe, who assisted with the generation and printing of research posters. Our CURE courses were initiated and sustained through a Mercy Senate Micro-Grant for Course Redesign (to D. Smyth) and a Mercy Faculty Development Grant (to D. Smyth). We are very grateful for the support of our school dean Dr. Joan Toglia (who provided funding for the CURE initiative and for professional development of the faculty including support for the Project-Based Learning Institute at Worcester Polytechnic Institute). Initiatives at YHC were supported through Faculty Development funds to D. Sieg and J. Schroeder, both of whom were also trained in CURE design during an REIL-Biology workshop at NABT. Lastly we would like to thank our colleagues at SENCER, especially Monica Devanas, who worked with Mercy College faculty, and Eliza Jane Reilly, Stephen Carroll, and Kathleen Browne for their constant support, guidance, and assistance with our projects to date, and for supporting D. Sieg and D. Smyth as SENCER Leadership Fellows.

References

Auchincloss, L. C., Laursen, S. L., Branchaw, J. L., Eagan, K., Graham, M., Hanauer, D. I.  … & Towns, M. (2014). Assessment of course-based undergraduate research experiences: A meeting report. CBE – Life Sciences Education, 13(1), 29–40.

Bangera, G., & Brownell, S. E. (2014). Course-based undergraduate research experiences can make scientific research more inclusive. CBE – Life Sciences Education, 13, 602–606.

Boyer, E. (1990). Scholarship reconsidered: Priorities for the professoriate. Princeton, NJ: The Carnegie Foundation for the Advancement of Teaching.

Brownell, S. E., Kloser, M. J., Fukami, T., & Shavelson, R. (2012). Undergraduate biology lab courses: Comparing the impact of traditionally based “cookbook” and authentic research-based courses on student lab experiences. Journal of College Science Teaching, 41(4), 36–45.

Brownell, S. E., Hekmat-Scafe, D. S.,Singla, V., Seawell, P. C., Imam, J. E. C.,Eddy, S. L., . . . & Cyert, M. S. (2015). A high-enrollment course-based undergraduate research experience improves student conceptions of scientific thinking and ability to interpret data. CBE – Life Sciences Education, 14, 1–14

Corwin, L. A., Graham, M. J., & Dolan, E. L. (2015). Modeling course-based undergraduate research experiences: An agenda for future research and evaluation. CBE – Life Sciences Education, 14, 1–13.

Cotner, S., Thompson, S., & Wright, R. (2017). Do biology majors really differ from non-STEM majors? CBE – Life Sciences Education, 16, 1–8.

CUREnet. (2018, October 11). Retrieved from https://curenet.cns.utexas.edu/

DIGI(cation). (n.d.). Retrieved from https://www.digication.com/

Eberlein, T., Kampmeier, J., Minderhout, V., Moog, R. S., Platt, T., Varma-Nelson, P., & White, H. B. (2008). Pedagogies of engagement in science: A comparison of PBL, POGIL, and PLTL. Biochemistry and Molecular Biology Education, 36(4), 262–273.

Gasper, B. J., & Gardner, S. M. (2013). Engaging students in authentic microbiology research in an introductory biology laboratory class is correlated with gains in student understanding of the nature of authentic research and critical thinking. Journal of Microbiology and Biology Education, 14(1), 25–34.

Gormally, C., Brickman, P., & Lutz, M. (2012). Developing a test of scientific literacy skills (TOSLS): Measuring undergraduates’ evaluation of scientific information and arguments. CBE – Life Sciences Education, 11, 364–377. 

Harrison M., Dunbar, D., Ratmansky, L., Boyd, K., & Lopatto, D. (2011). Classroom-based science research at the introductory level: Changes in career choices and attitude. CBE – Life Sciences Education, 10(3), 279–286.

Howard Hughes Medical Institute (HHMI). (2019, Jan. 19). Inclusive excellence. Retrieved from https://www.hhmi.org/developing-scientists/inclusive-excellence

Jordan, T. C., Burnett, S. H., Carson, S., Caruso, S. M., Clase, K., DeJong, R. J., … & Hatfull, G. F. (2014). A broadly implementable research course in phage discovery and genomics for first-year undergraduate students. MBio, 5(1), e01051–13.

Kuh, G.D. (2014). High-impact educational practices: What they are, who has access to them, and why they matter. Retrieved from https://www.aacu.org/publications-research/publications/high-impact-educational-practices-what-they-are-who-has-access-0

Lopatto D., Alvarez, D., Barnard, D., Chandrasekaran, C., Chung, H. M., Du, C., . . . & Elgin, S. C. R. (2008). Undergraduate research: Genomics Education Partnership. Science, 322, 684–685.

SEA-PHAGES | Home. (n.d.). Retrieved from https://seaphages.org/

Semsar, K., Knight, J. K., Birol, G., & Smith, M. K. (2011). The Colorado learning attitudes about science survey (CLASS) for use in biology. CBE – Life Sciences Education, 10, 268–278.

Shaffer, C. D., Alvarez, C., Bailey, C., Barnard, D., Bhalla, S., Chandrasekaran, C., . . . & Elgin, S. C. R. (2010). The Genomics Education Partnership: Successful integration of research into laboratory classes at a diverse group of undergraduate institutions. CBE – Life Sciences Education, 9(1), 55–69.

Shortlidge, E. E., Bangera, G., & Brownell, S. E. (2017). Each to their own CURE: Faculty who teach course-based undergraduate research experiences report why you too should teach a CURE. Journal of Microbiology and Biology Education, 18(2), 1–11.

Shortlidge, E. E., & Brownell, S. E. (2016). How to assess your CURE: A practical guide for instructors of course-based undergraduate research experiences. Journal of Microbiology and Biology Education, 17(3), 399–408.

Small World Initiative / Antibiotic Resistance / Crowdsourcing New Antibiotics / Inspiring Science Students. (n.d.). Retrieved from http://www.smallworldinitiative.org/

Smyth, D. S. (2017). An authentic course-based research experience in antibiotic resistance and microbial genomics. Science Education and Civic Engagement: An International Journal, 9(2), 59–62.

Strobel, J., & van Barneveld, A. (2009). When is PBL more effective? A meta-synthesis of meta-analyses comparing PBL to conventional classrooms. Interdisciplinary Journal of Problem-Based Learning, 3(1), 44–58. 

Tiny Earth. (n.d.). Retrieved from http://tinyearth.wisc.edu/

Weston, T. J., & Laursen, S. L. (2015). The Undergraduate Research Student Self-Assessment (URSSA): Validation for use in program evaluation. CBE – Life Sciences Education, 14(3), ar33.

Download the Article

Download (PDF, 663KB)

At the Intersection of Applied Sciences: Integrated Learning Models in Computer Science and Software Engineering and Communication Disorders

Abstract

The use of innovative technologies in speech-language pathology is revolutionizing diagnostic and treatment approaches for individuals with communication disorders.  This evolution has required educators to integrate the use of technologies into the clinical training pedagogy.   Phonetic transcription is a foundational skill presented early in the undergraduate speech-pathology curriculum and serves as the basis for advanced course work in clinical diagnostic decision-making.  Mastery requires regular practice and performance feedback.  One factor that impedes the provision of more practice opportunities is the widely agreed-upon problem of grading phonetic transcription assignments by hand. The development of a computational tool that automatically grades transcription assignments served as the mechanism for an integrated learning opportunity between the departments of Communication Disorders and Computer Science and Software Engineering at Auburn University.  

Introduction

The use of innovative technologies for clinical practice in speech-language pathology is revolutionizing practices for diagnosis and treatment of communication-related disorders across the lifespan. This evolution has also required educators to integrate the use of technologies into the clinical training pedagogy. One such area is in the teaching of phonetic transcription (Abel et al., 2016; Mompeán, Ashby, and Fraser, 2011; Sullivan and Czigler, 2002; Titterington, and Bates, 2018; Vassière, 2003 Verhoeven and Davey, 2007).  Phonetic transcription allows speech-language pathologists (SLPs) to (1) create a visual representation of the status of speech production skills and (2) to interpret the coded speech in order to make diagnostic decisions for individuals at risk for communication disorders. 

Phonetic transcription is a foundational skill presented early in the undergraduate communication disorders curriculum (Howard and Heselwood, 2002; Randolph, 2015). Students of communication disorders must become experts in phonetic transcription, which involves capturing the sounds of speech in written form in order to create a transcript that represents how words were produced by an individual speaker (Knight, 2010).  This written phonetic transcript is important for continued assessment and clinical diagnostics.  However, phonetic transcription requires the development of the ability to categorize speech sounds perceptually into phonemic categories and to write what was perceived using the International Phonetic Alphabet (IPA) coding system (Howard and Heselwood, 2002, Ladefoged, 1990). The IPA coding system contains over 100 symbols representing consonants, vowels, diacritics, accents, and suprasegmentals. This is a substantial number of symbols to become familiar with, learn to identify, and use, within a single course.  As in other scientific disciplines such as chemistry and computer science, a universal code allows for the standardization of the documentation, analysis, and interpretation of the code by specialists in the field, and just as the periodic table or JAVA Code may seem at first to be a foreign language to novices, the International Phonetic Alphabet (IPA) presents as a new language as well (Müller and Papakyritsis, 2011).  Many students find this written code to be challenging, as it requires a cognitive shift from the standard written alphabetic code system to a perceptual system that captures the contrastive distinctions between the sounds in language (Knight, 2011). For example, although the words ‘coat’ and ‘king’ start with different letters in the standard written alphabet, phonetically, there is no distinction, and so the IPA characters are the same (‘k’).  Similarly, a single alphabetic character, such as the ‘s’ in ‘sing’ and ‘has,’ may be represented by different IPA characters (‘s’ and ‘z’, respectively, in the previous example). In some cases, such as the words ‘ball’ and ‘light,’ the IPA characters have to be further notated with additional symbols (diacritic [ł] versus phoneme /l/, respectively) that describe the variation in how these two same sounds are produced in different places in the mouth although they are the same sound.  This challenge is compounded as phonetic transcription tasks increase in complexity from individual sounds to full words and sentences. Advanced skills are required to transcribe using diacritics.  

Students who want to become speech pathologists typically receive one semester of instruction in phonetics; however, recent attention has been drawn to whether this provides students with enough opportunities for learning (Randolph, 2015). Recent evidence supports the idea that additional opportunities for practice may positively affect student success (Hillenbrand, 2014; Hillenbrand, Gayvert, and Clark, 2015).  Conversely, “the less experience students have in conducting phonetic transcriptions, the less apt they are at becoming proficient in this skill” (Randolph, 2015, p. 1). Surveyed practicing clinicians have also expressed the need for additional practice opportunities as students and for meaningful opportunities to extend their training further as practitioners (Knight, Bandali, Woodhead, and Vansadia, 2018).  

The Real-World Issue

When learning methods for the transcription of disordered speech, it is beneficial for students to receive regular feedback on their progress and to have opportunities to collaborate with peers to understand the flexibility of speech perception during the transcription process. One factor that limits the provision of such experiences is the widely agreed-upon problem of grading phonetic transcription assignments (Heselwood, 2007). Traditionally, phonetic symbols are taught sequentially in a face-to-face instruction model, the students are assigned phonetic practice assignments on paper, and the assignments are graded later by hand. Students rarely get immediate feedback on transcriptions since grading by hand is time intensive. Additionally, when trying to provide timely feedback to students, it is often difficult for an instructor to get a clear picture of the overall types of mistakes students are frequently making and to utilize this feedback to inform instruction. The teaching of phonetic transcription therefore presents a unique pedagogical opportunity for enhancing student learning with the support of online learning platforms that could automate some of these processes (Titterington and Bates, 2018).  The lack of an automated grading model for phonetic transcription assignments presents an important gap in the existing teaching tools. To address this gap, faculty from the Auburn University Department of Communication Disorders proposed the development of a computational tool, the Automated Phonetic Transcription Grading Tool, to automatically compare students’ phonetic transcriptions of speech samples to their instructor’s transcriptions.

Operationalizing and automating the phonetic transcription grading process through the implementation of such a computational tool has many benefits, including (1) decreasing instructor time and effort in grading phonetic transcription accuracy, (2) reducing scoring bias, (3) facilitating learning by providing students with immediate feedback, (4) informing the teaching process by providing data on student performance, and (5) increasing engagement and dynamic learning. Also, the ability to visualize summative class results allows students to see differences between their transcriptions and those of their peers. This visualization can promote discussion about differences in human speech production and perception and replicate real clinical cases where clinicians have differences in perception and clinical decision-making.

Interdisciplinary Learning Model 

The development of the Automated Phonetic Transcription Grading Tool (APT-GT), served as a mechanism for an integrated learning opportunity between the departments of Communication Disorders (CMDS) and Computer Science and Software Engineering (CSSE) at Auburn University. Faculty in the CMDS department challenged the CSSE department to create a user-friendly, aesthetically pleasing web-based interface for practice transcription assignments (Norman, 2002), and to implement an algorithm to automatically grade the assignments.  An answer to this challenge was the integration of student learning in CSSE and CMDS to inform the design and implementation.  This service-learning opportunity allowed students in a User Interface Design course, a software engineering upper-level undergraduate and graduate course, to connect engineering science with the public issue of effective and efficient identification of individuals with communication disorders.

To design the APT-GT, the CSSE team first gathered requirements from the subject matter experts in the field (the CSDS team), then crafted user scenarios for the Student User, Teacher User, and Admin User of the system.  The scenarios were captured utilizing Unified Modeling Language (UML) to capture a pictorial description of the system and cataloging roles, actors and their relationships, system interaction, and flow (Booch, Rumbaugh, and Jacobson, 2005; Rumbaugh, Booch, and Jacobson, 1998). Operation Logic was codified through simplified class diagrams to inform the design and describes the structure for the users of the system as illustrated in Figure 1 (Sparks, 1995).

Once the system scenarios were captured, software requirements created, software language identified, and environment identified, the software development team began iteratively developing software to instantiate this software system. The initial development began with the creation of low-fidelity drawings (i.e., paper prototypes) of our vision of the system and the creation of quick wire-frames of the envisioned system (Bailey, 1982; Shneiderman and Plaisant, 2010). In the second stage of prototyping, these images were refined to make them more detailed and to improve aesthetic appeal (Norman, 2002).

Keyboard development

One special requirement of the system was the design of the IPA keyboard.  Many of the other features that we have developed in the APT-GT system are available in existing course management systems, but one unique aspect was the development of an interactive IPA keyboard. Students typically are required to complete assignments by hand, download special fonts, or copy and paste symbols from websites (Small, 2005, p. 4–5).  Students who are initially learning IPA may be additionally encumbered by the need to search for symbols in texts or online.  In the design process, key placement and size were considered to reduce the time searching for keys.  Multiple versions of the keyboard were implemented to engage students in basic American English broad transcription (“Keyboard 1”), advanced narrow transcription of disordered speech using diacritics (“Keyboard 2”), and a complete set for full IPA implementation for international and multilingual use (“Keyboard 3”).  Scaffolding the keyboard complexity was considered in order to reduce confusion for the novice user and build confidence in the task incrementally. 

Outcomes of the Integrated Learning Model

CMDS course

Implementation of the software tool was supported by the first and third authors’ articulation and motor speech disorders courses in CMDS. CMDS students collaborated through the participatory design process (Bailey, 1982; Shneiderman and Plaisant, 2010) to aid in the development of the first version of APT-GT.  Students (n=67) in undergraduate and graduate course work were used as beta testers to provide ease of use feedback to the student-led design team.  Student feedback was used for refinement of the software to meet identified instructional needs.  The students were surveyed at the beginning and end of the semesters to determine if the applied computer-supported learning environment with automated performance feedback increased confidence in their mastery of transcription when given additional practice.  Students were asked the following: What is your greatest concern in transcribing disordered speech? What do you think you need to learn to be a more confident transcriber? If your level of confidence is different now compared to the beginning of the course, what aspects of the training modules do you think affected your level of confidence? What components of the transcription modules seemed helpful to you in learning phonetic transcription? The data were analyzed qualitatively to understand student sentiment following transcription practice modules.   Open-ended responses were collapsed into themes independently by two research analysts. Themes were further collapsed into broad categories agreed upon by the two researchers.

Results

Students’ greatest areas of concern in transcribing disordered speech were in their ability to understand disordered speech (38%), to transcribe accurately (39%), to transcribe speech sounds (20%), to transcribe quickly (1%), and their general lack of experience (1%).  To be a more confident transcriber, students expressed the need for increasing their knowledge of the phonetic symbols (39%) and additional opportunities for practice (35%).  Levels of confidence were reported to have increased as a result of additional practice opportunities (32%), the variety of speech samples, which included talkers with different disorders (31%), automated feedback (13%), and comparison of peer results (13%). Others commented on the ease of use of the keyboard and the frequent opportunities for practice.  When asked which components of the transcription modules were most helpful, students rank-ordered the following items (one being the highest): (1) access to real clinical speech samples, (2) the ability to compare transcriptions with those of classmates, and (3) obtaining automated transcription feedback (see Figure 4).  A few (six) students indicated that they did not think the transcription modules increased their confidence, and one student did not feel that they benefited from the modules.

CSSE course

This User Interface Design course helped CSSE students integrate the theory of user interface design by engaging in practical software development projects through a fully elaborated real-world case study. This course model typically gives students a solid understanding of the user interface design process (Wolf, 2012; Holtzblatt and Beyer, 2014; Caristix, 2010). The current learning episode included the following components: gathering of requirements, task analysis, development, testing, and a project presentation of findings from preliminary user evaluations pertaining to the analysis of user satisfaction and system effectiveness.  It also gave them real-world experience in teamwork, as they collaborated with a team of four to eight individuals, as well as additional practice in important programming skills.  

Conclusion

Through this collaborative and multifaceted effort, we aimed to create a rich learning experience for students in both departments to increase the efficiency of CMDS and CSSE instruction.  Students in both classes had opportunities that increased engagement and interaction with science-based applied methodologies for addressing current public health issues. This marriage of computer software engineering and communication disorders learning objectives met two major goals: (1) to provide increased student engagement and (2) to increase applied science by addressing real-world problems.  Instructors were able to close the theory-to-practice gap in two different disciplines through interdisciplinary collaboration. 

Future directions

We are currently working on making the learning management system more widely available to allow for testing by faculty at other institutions, particularly within the CSD profession, but also by teachers of linguistics and foreign languages and teachers of English to speakers of other languages.  We also aim for further development and refinement to improve the user interaction experience and to improve technical support for usage with other languages.

About the Authors

​​

Marisha Speights Atkins

Dr. Marisha Speights Atkins is an assistant professor at Auburn University and Director of the Technologies for Speech-Language Research Lab. Her work focuses on the development of innovative technologies for diagnosis and treatment of speech disorders.  Her research interests include child speech production and disorders, acoustic-based technologies for assessment and treatment of speech disorders, speech intelligibility, and remote assessment of speech disorders through telepractice.

​​

Cheryl Seals

Dr. Cheryl Seals is an associate professor in Auburn University’s Department of Computer Science and Software Engineering. Dr. Seals directs the Auburn University Computer Human Interaction Lab, which develops computing applications to improve the usability of products for many different populations (4-H, K-12 Teacher Education, introductory computer programming, and mathematics education and reinforcement applications). Lab efforts include development of educational applications to support advanced personalized learning tools and testing applications to determine instructional potential and design usability for a population, with the goal of universal usability.

Dallin Bailey

Dr. Dallin Bailey’s clinical research efforts primarily involve using linguistic tools to enhance treatment outcomes and patient satisfaction for aphasia and apraxia of speech treatments. His research focuses on the development and testing of treatments and treatment outcome measures for aphasia and apraxia of speech, kinematic measurement of speech motor learning, abstract word processing, verb processing, and single-subject research design.

References

Abel, J., Bliss, H., Gick, B., Noguchi, M., Schellenberg, M., & Yamane, N. (2016). Comparing instructional reinforcements in phonetics pedagogy. In Proc. ISAPh 2016 International Symposium on Applied Phonetics (pp. 52–55).

Bailey, R. W. (1982). Human performance engineering: A guide for system designers. Englewood Cliffs, NJ: Prentice Hall.

Brooch, G., Rumbaugh, J., & Jacobson, I. The Unified modeling language user guide (2nd ed.).  (2005) Boston: Addison-Wesley. 

Caristix. (2010). 8 Stages in an HL7 Interface Lifecycle .  Retrieved from http://caristix.com/blog/2010/10/8-stages-in-an-hl7-interface-lifecycle/

Heselwood, B. (2007). Teaching and assessing phonetic transcription: A Roundtable discussion. Centre for Languages Linguistics & Area Studies. Retrieved from https://www.llas.ac.uk/resources/gpg/2871.html 

Hillenbrand, J. (2014). Phonetics exercises using the Alvin experiment-control software. The Journal of the Acoustical Society of America, 135(4), 2196–2196.

Hillenbrand, J. M., Gayvert, R. T., & Clark, M. J. (2015). Phonetics exercises using the Alvin experiment-control software. Journal of Speech, Language, and Hearing Research, 58(2), 171–184.

Holtzblatt, K., & Beyer, H. R. (2014). Contextual design. In The Encyclopedia of human-computer interaction (2nd ed.), (#8). The Interaction Design Foundation. Retrieved from https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/contextual-design  

Howard, S. J., & Heselwood, B. C. (2002). Learning and teaching phonetic transcription for clinical purposes. Clinical Linguistics & Phonetics, 16(5), 371–401.

Knight, R. A. (2010). Sounds for study: Speech and language therapy students’ use and perception of exercise podcasts for phonetics. International Journal of Teaching and Learning in Higher Education, 22(3), 269–276.

Knight, R. A. (2011). Towards a cognitive model of phonetic transcription. Phonetics Teaching and Learning Conference.

Knight, R. A., Bandali, C., Woodhead, C., & Vansadia, P. (2018). Clinicians’ views of the training, use and maintenance of phonetic transcription in speech and language therapy. International Journal of Language & Communication Disorders, 53(4), 776–787.

Ladefoged, P. (1990). The revised international phonetic alphabet. Language, 66(3), 550–552.

Mompeán, J. A., Ashby, M., & Fraser, H. (2011). Phonetics teaching and learning: an overview of recent trends and directions. In Proceedings of the 17th International Congress of Phonetic Sciences (Vol. 1, pp. 96-99).

Müller, N., & Papakyritsis, I. (2011). Segments, letters and gestures: Thoughts on doing and teaching phonetics and transcription. Clinical Linguistics & Phonetics, 25(11–12), 949–955.

Norman, D. A. (2002). Emotion and design: Attractive things work better. Interactions Magazine, 9(4), 36–42. Retrieved from web.jnd.org/dn.mss/emotion_design_attractive_things_work_better.html 

Randolph, C. (2015). The “State” of phonetic transcription in the field of communication sciences and disorders. Journal of Phonetics and Audiology, 1, e102.

Rumbaugh, J., Booch, G., & Jacobson, I. (1998). The unified modeling language user guide. Addison-Wesley. https://pdfs.semanticscholar.org/fc51/1dcebd3dae76133d5dbbda4250bebd0fb5e3.pdf

Shneiderman, B., & Plaisant, C. (2010). Designing the user interface: Strategies for effective human-computer interaction, (5th ed.). Reading, MA: Addison-Wesley Publ. Co. 

Small, L. H. (2005). Fundamentals of phonetics: A practical guide for students. Boston: Pearson/Allyn and Bacon.

Sparks, G. (2001). Database modelling in UML. Methods & Tools, 9(1), 10–23.

Sullivan, K., & Czigler, P. (2002). Maximising the educational affordances of a technology supported learning environment for introductory undergraduate phonetics. British Journal of Educational Technology, 33(3), 333–343.

Titterington, J., & Bates, S. (2018). Practice makes perfect? The pedagogic value of online independent phonetic transcription practice for speech and language therapy students. Clinical Linguistics & Phonetics, 32(3), 249-266.

Vaissière, J. 2003. New tools for teaching phonetics. Proceedings of the 15th International Conference of Phonetic Sciences (ICPhS), Barcelona. Retrieved from https://www.internationalphoneticassociation.org/icphs-proceedings/ICPhS2003/papers/p15_0309.pdf

Verhoeven, J., & Davey, R. (2007). A multimedia approach to eartraining and IPA transcription. In Proceedings of Phonetics Teaching and Learning Conference, (pp.1–4).  London: University College London.

Wolf, Lauren. (2012).  6 Tips for designing an optimal user interface for your digital event. INXPO. Retrieved from https://archive.is/20130616121623/http://web.inxpo.com/casting-calls/bid/105506/6-Tips-for-Designing-an-Optimal-User-Interface-for-Your-Digital-Event

 

Download the article

Download (PDF, 492KB)

Civic Engagement and Informal Science Education

Introduction

The following article by Larry Bell (Museum of
Science, Boston) represents reflection and analysis generated by the National Science Foundation project “Maximizing Collective Impact Through Cross-Sector Partnerships: Planning a SENCER and NISE Net
Collaboration” (DRL-1612376). This National Center for Science & Civic Engagement grant was the latest in a series of efforts to explore partnerships between higher education institutions and informal learning organizations based on civic engagement strategies. As Bell points out, one of the challenges in such collaboration is arriving at a common understanding of the meaning and implications of that term. In this piece, he suggests ways for science centers and children’s museums to think about civic
engagement and its future role in their activities.

Fruitful connections between SENCER and informal learning were discussed in earlier articles in this journal (Friedman & Mappen 2011; Ucko 2015). They became the basis for grants from NSF, the Noyce Foundation, and the Institute of Museum and Library Services that funded 15 cross-sector partnerships. As noted in a
recent overview of those projects, “collaboration between
informal science organizations and higher education institutions based on civic engagement offers potential benefits for the partners, the students, and the public” (Semmel & Ucko 2017).

In deconstructing its definition, Bell emphasizes the value of a civic engagement focus in providing tools and knowledge that prepare individuals for future participation, both nationally and locally. At the same time, it can enhance learning among students by increasing motivation and demonstrating the relevance of  STEM content to their wider interests and concerns. This complementarity and its positive impact on faculty practice became a basis for characterizing SENCER as a “community of transformation” in STEM education reform (Kezar & Gehrke 2015).

Many avenues exist for participation in civic activities that complement and enhance STEM knowledge and understanding . For example, community-based citizen science projects often have been the platform for higher education-informal learning partnerships. We hope that this article and its proposed model for civic engagement will encourage new strategies for effective collaboration involving informal learning organizations.

—David Ucko

Civic Engagement and Informal Science Education

Leaders of the National Informal STEM Education Network (NISE Net) were fortunate to be part of a collaborative planning grant led by the National Center for Science and Civic Engagement to explore a strategic collaboration between Science Education for New Civic Engagements and Responsibilities-Informal Science
Education (SENCER-ISE) and NISE Net, two extensive STEM networks with overlapping missions, but with distinct organizational assets and constituencies. One of the challenges NISE Net leaders had from the original conception of the project was to get a clear understanding of what “civic engagement” might mean for science and children’s museums. It is not unusual for museums, steeped in the approaches of informal science education and oriented toward supporting K-12 formal education, to be unfamiliar with related but different approaches to
engaging learners in science and technology. As an
example, the Center for Advancing Informal Science
Education (CAISE) led an inquiry group nearly a decade ago and wrote a report about “how public engagement with science (PES), in the context of informal science education (ISE), can provide opportunities for public awareness of, and participation in, science and technology” (McCallie et al. 2009). The field is exploring its potential roles in PES today.

Similarly, engaging with the leaders of the National Center for Science and Civic Engagement and the SENCER initiative raised questions about what “civic engagement” might mean for science museums. Initial discussions revealed that “civic engagement” might encompass a wide range of activities for which SENCER model courses might provide examples, but NISE Net leaders felt that they needed some kind of working model to understand how “civic engagement” relates to a variety of activities that NISE Net partner organizations already engage in. We also wanted to understand how characteristics of civic engagement might be differentiated from current practices in informal science education.

Deconstructing a Definition of Civic Engagement

As a way of thinking about this question, we searched for a variety of definitions of civic engagement and decided for this exercise to use one we found in the New York Times (2006), which was actually an excerpt from Civic Responsibility and Higher Education, edited by Thomas Ehrlich:

Civic engagement means working to make a difference in the civic life of our communities and developing the combination of knowledge, skills, values and motivation to make that difference. (Ehrlich 2000, vi)

A first step in exploring this definition required further examination of some of its components. A key question for ISE organizations is who is “working to make a difference”? At the workshop in March, some NISE Net leaders noted that they had been interpreting the SENCER initiative incorrectly since their first exposure to it several years ago. They thought SENCER was an acronym for “science education through new civic engagement and responsibility” and that SENCER courses involved students in civic projects in the community during the course of which they learned the science they needed to carry out the projects. But at the March meeting, David Burns clarified that SENCER was the acronym for “science education for new civic engagement and responsibility.” The learning did not necessarily take place by participating in a community-based civic engagement project (although it might) but rather was designed to provide students with tools that they might need for their own future civic engagement. Similarly for ISE organizations, the question thus arises whether the civic engagement work of ISE organizations might be designed around preparing members of their audience for carrying out future civic engagement activities or whether the ISE organizations would organize civic engagement activities of their own in which members of their audience might or might not participate.

Civic Life

The next term in the definition of civic engagement that needed exploration was “civic life.” For this the
National Standards for Civics and Government provided a definition.

Civic life is the public life of the citizen concerned with the affairs of the community and nation as contrasted with private or personal life, which is devoted to the pursuit of private and personal interests. (Center for Civic Engagement 2014)

NISE Net leaders felt that science museums had a long history of focusing on the personal life of their audience members. This includes both personal opportunity (children should have the opportunity to pursue careers that involve science and technology) and beneficial choices in their personal life (people should have nutritional food choices). NISE Net leaders were less clear on the extent to which science museums focused explicitly on “affairs of the community and nation” but recognized that recent developments in the governance of the country raised questions about the connections between scientific evidence and sound policy decisions. That was causing some members of the ISE community to ask questions about whether the field was doing enough about science and public policy.

Values and Motivation

Another term in the definition of civic engagement that raised questions was “combination of knowledge, skills, values and motivation.”  Many ISE organizations are familiar with a set of potential ISE impacts outlined in Framework for Evaluating Impacts of Informal Science Education Projects (Friedman 2008), which NSF references in its solicitations for Advancing Informal STEM Learning proposals. That document identifies the following potential impacts: awareness, knowledge, understanding, engagement, interest, attitude, behavior, and skills. Values and motivation are new potential impacts of ISE for civic engagement. The Framework speaks of “motivation” as a characteristic audiences bring to their ISE experience rather than as an impact of the experience.

Civic Responsibility and Higher Education describes motivation for civic engagement in this way:

A morally and civically responsible individual
recognizes himself or herself as a member of a larger
social fabric and therefore considers social problems to be at least partly his or her own; such an individual is willing to see the moral and civic dimensions of issues, to make and justify informed moral and civic judgments, and to take action when appropriate. (Ehrlich 2009, introduction, xxvi)

The CAISE report on PES explicitly identifies the following values in connection with the goals of public engagement activities in ISE for individuals or communities:

Recognition of the importance of multiple perspectives and domains of knowledge, including scientific understandings, personal and cultural values, and social and ethical concerns, to understanding and decision making related to science and to science and society issues. (McCallie et al.  2009)

Making a Difference

The final element to note in the definition of civic engagement that the New York Times pulled from Ehrlich is that the purpose of civic engagement is to “make a difference.” Several sources describe what making a difference might mean:

“Civic engagement is… individual and collective action designed to identify and address issues of public concern.” (American Psychological Association (APA) 2018)

It can be defined as citizens working together to make a change. (Wikipedia, 2017)

It means promoting the quality of life in a community, through both political and non-political processes. (Ehrlich 2000)

Constructing a Model for Civic Engagement in ISE

What emerges from the definition used here and the
exploration of some of the terms is a potential model for civic engagement in informal science education. Civic
engagement starts with a public concern; requires motivation to make a difference and the acquisition of relevant knowledge, skills, and values; and proceeds with taking action to make a difference.

Furthermore, ISE organizations motivated for civic engagement have some options related to the question raised earlier about who is taking action to make a difference:

The museum provides members of its audience with knowledge, skills, and perhaps values and motivations to support their civic engagement activities.

The museum develops civic engagement projects of its own to make a difference in the community.

The museum and other community organizations partner to carry out civic engagement projects.

Perhaps the aspects of civic engagement identified on this page can help ISE professionals think about civic engagement in terms of the things ISE organizations currently do or do not do.

Science and Children’s Museums Themselves Are Civic Engagement Activities

On the most fundamental level, the very existence of science and children’s museums is a kind of civic engagement. Their classification as 501(c)(3) charitable organizations is recognition that their purpose is to “promote the quality of life in a community” principally or exclusively through non-political processes. Science museums may consider several different public concerns as the ones that drive their mission. For example,

The talent pool for STEM innovation is too small, resulting in lower national achievement and prosperity.

Opportunities in STEM are not equally distributed among those in the community.

Many of the complex issues that shape our daily lives and our future require an understanding of basic science, math, engineering, and technology in order to make informed decisions.

As science and technology pervade our lives, our societal challenges become more complex.

There is a lack of communication between the scientific community and various publics.

The school system alone is not adequate for stimulating children’s interest and self-efficacy in STEM.

Individuals are motivated to address these concerns though science museums in a variety of ways. Some work for science museums and develop a career doing so, working in a variety of ways to strengthen the effectiveness of their own organization and other similar organizations. Many volunteer their time and talents without financial compensation, working for science museums because they find the work meaningful and fulfilling. Others donate money in small amounts or in very large amounts because they feel the organization is doing good for the community and addressing specific public concerns at both national and community levels.

Science museums work to gain the knowledge and skills needed to be effective in their work. Grants from National Science Foundation, Institute for Museum and Library Sciences, and other sources acknowledge the efforts to advance the knowledge and skills of individual organizations and of the field as a whole. Organizations like the Association of Science-Technology Centers, the Association of Children’s Museums, the American Association of Museums, the Visitor Studies Association, and the Center for the Advancement of Informal Science Education all support the efforts of the field to advance its knowledge and skills and to support the values of the profession.

Science museums also take action to address the public concerns at the heart of their missions. Furthermore they recruit individuals, corporations, and other organizations in their communities to work together with them in addressing those concerns.

In addition to the overall work of such organizations, science and children’s museums also undertake projects that are aimed at addressing specific community needs.

The Computer Clubhouse (http://www.computerclubhouse.org), for instance, originally developed by The Computer Museum in Boston, is aimed at a gap in opportunity for youth from underserved communities and now supports a global community of 100 Clubhouses in 19 countries.

The Engineering is Elementary curriculum and teacher support activities (https://www.eie.org) developed by the Museum of Science are aimed at a significant content gap in formal elementary education.

Science museums conduct a variety of teacher training programs, because elementary and middle school teachers often have little training in science or science education. (Association of Science-Technology Centers [ASTC] 2014)

Not everything science and children’s museums do is in fulfillment of civic engagement goals, but on a fundamental level they can be seen as civic engagement efforts for the purpose of stimulating youth in areas of STEM learning.

But now we step aside from this fundamental perspective and look at other more specific ways in which science museums can support civic engagement.

Support for Visitors’ Future Civic Engagement

First we explore the idea that the museum is not organizing a civic engagement activity in the community itself, any more than it is conducting a wide range of scientific research itself, but is helping to prepare its visitors for civic engagement (or scientific research roles) in their future, much in the way that SENCER courses do for students.

In this regard, comments in NISE Net’s Nanotechnology and Society Guide (Wetmore et al. 2013) outline societal concerns that explain the motivation behind the Guide, which seems to come from a civic engagement perspective.

The decisions we make about science and technology have profound effects on people.… nanotechnology is poised to have a significant impact on our lives in the coming years, and as such it is very important that we engage in open conversations about what it is, what is possible, and where we would like it to go. But sometimes people’s voices about science and technology are muted because it can be difficult to know how to engage in these discussions. Nanotechnology can be especially intimidating, as many people do not even know what it is.  [It is] important to give everyday citizens a voice.

The Guide describes a societal problem and works to motivate everyday citizens to take an active role by participating in open conversations and letting their voices be heard. The Guide and associated hands-on materials, training activities, and other supporting resources all provide knowledge and skills necessary to everyday citizens so that they can play a role. All of this material stops short of the “take action” step. It suggests there is opportunity to take action, but it provides no direct means for doing so, leaving such action to play out in other domains apart from the science or children’s museum, except, of course, for the universal take action plan of such organizations: “learn more.”

Another kind of  “take action” step that ISE organizations often promote is donating funds to the organization itself to carry out its work. An interesting example of incorporating giving to a worthy cause was built into the Bronx Zoo’s Congo Rainforest Gorilla experience almost two decades ago. After walking through the forest, viewing a movie about gorilla research, and seeing the live gorillas, visitors get to decide which of the Zoo’s conservation projects their admission fee should be directed toward. In 2009 the Wildlife Conservation Society reported that the exhibit had raised $10.6 million to fund the conservation of Central Africa’s Congo Basin rainforest and wildlife and turned seven million visitors into conservationists!

A couple of examples of “take action” steps in a temporary exhibition at the Museum of Science decades ago were incorporated by MOS staff into a Smithsonian traveling exhibition about the destruction of tropical rainforests. Evaluation reports about the exhibition at earlier sites noted that the exhibit left some visitors who care about the environment unclear about what they could do about the situation. Museum staff added to the exhibition a small gift shop of rainforest sustaining products along with their stories. There also was an area about environmental organizations that focus on rainforest support actions, with postcards visitors could fill out to get more information or to get on the mailing list of those organizations. Visitors could fill out a card and drop it in a mailbox in the exhibition to get connected with an organization to take action.

These are just a few examples. There are many others. But it is not typical for science museums to get all the way to the “take action” stage in their exhibitions and programs. Most provide support for visitors who can find their own path to action.

Identifying and Addressing Issues of Public Concern

A characteristic of civic engagement is that it involves identifying and addressing issues of public concern. Except for the overall concerns about science education, most science museum exhibits don’t evolve from public concerns. Perhaps the biggest exception to that may be in the area of environmental conservation and climate change.

A scan of a few webites that list high-priority public concerns turn up a number of topics:

United Nations Global Issues

  • Aging
  • AIDS
  • Atomic energy
  • Big data for the Sustainable Development Goals (SDGs)
  • Children
  • Climate Change
  • Decolonization
  • Democracy
  • Food
  • Human rights
  • International law and justice
  • Oceans and the Law of the Sea
  • Peace and security
  • Population
  • Refugees
  • Water
  • Women

Ten Social Issues Americans Talk the Most About on Twitter (Dwyer, 2014)

  • Better job opportunities
  • Freedom from discrimination
  • A good education
  • An honest and responsive government
  • Political freedoms
  • Action taken on climate change
  • Protecting forests, rivers, and oceans
  • Equality between men and women
  • Reliable energy at home
  • Better transportation and roads

There are many lists like these two. Some topics may be more familiar to science museum environments: AIDS, aging, climate change, food, heath, oceans, population, water,  and education to name a few. Science Museum of Minnesota’s Race: Are We So Different? exhibition is a notable recent example. New technologies like nanotechnology and synthetic biology are topics we have covered in forums, but they are generally little known by the public and so usually come not from a current widespread public concern but rather from an anticipated future public concern. One question for any large-scale collaborative project, then, is whether there is a particular global or national public concern that tens or hundreds of organizations would want to work on together, or if organizations would prefer to address their own local concerns.

Role a Science Museum Could Play

Assuming that a science museum, or group of museums, is particularly interested in an issue of public concern and does not want to organize its own civic engagement activity, but would like to support their visitors’ civic engagement capacity, there are a number of things the museum(s) could do. If civic engagement for individuals involves development of knowledge, skills, values, and motivation to make a difference, then for whatever issue one might choose, museums could, for instance:

Provide visitors with background knowledge relevant to the social issue, such as

  • Awareness of the issue
  • Scientific data related to the issue

Provide visitors with skill development activities
related to taking action, such as

  • Getting further information
  • Talking with others about the issue in
    productive ways
  • Recognizing elements of arguments: scientific evidence, personal experience, social values

Provide visitors with experience related to the range of values associated with the issue:

  • Exposure to the views of others in connection with the issue
  • Visitor activity in which participants explore their own values in connection with the issue

Provide visitors with information about and connections with other organizations through which visitors could get involved in activities related to the issue.

This is similar to what museums have done recently for nanotechnology and synthetic biology, except that they might:

  • Be more specific about the public concern
  • Put additional effort into building motivation for involvement, and
  • Incorporate a “take action” component if appropriate.

If an organization like NISE Net took this approach, it would need to consider if it would tackle one particular concern, spend a couple of years working on it, and then disseminate materials to use in connection with that concern broadly; or if it would try to create tools to help individual partners develop materials of their own for the different specific problems they wish to address. All of this would be done with the ultimate goal of providing members of museum audiences with support for their own civic engagement.

Partnering for Civic Engagement

A different approach to civic engagement that a museum might take is to partner with other community organizations to work on solving societal problems directly, rather than preparing their visitors to be able to do that on their own. The NISE Net submitted a proposal to NSF in 2016, STEM Community Partnerships, which is an example of that kind of civic engagement. The proposal identified a social issue:

To secure our nation’s future in science and technology, the US needs a workforce that has both broad general competency in STEM and deep specialized talent in the STEM fields, and that benefits from diverse perspectives, knowledge, and abilities. Currently, the STEM workforce does not represent the U.S. population as a whole. The U.S. Department of Commerce reports that women, Hispanics, and non-Hispanic Blacks have been consistently underrepresented in the STEM fields, and are only half as likely as all workers to hold STEM jobs. The underrepresentation of women, persons of color, and other groups in the STEM workforce is not only a STEM capacity issue but also a social justice issue, reflecting a profound disparity of opportunities and resources across the population. (Ostman 2006)The project description goes on to describe partnerships among science museums and YMCA branches, similar to work that the Children’s Museum of Houston does, to produce and deliver out-of-school-time experiences designed to reach underrepresented youth with engagement in STEM. The project calls for local partnerships in each participating community and a national partnership to support the local ones. The national partnership is designed to support the professionals at museums and YMCA branches in taking action to address the concern.

Unfortunately, the proposed project has not yet been funded.

Certainly science museums have the capacity to form local partnerships to address local issues. Many such partnerships likely already exist. One question about a large-scale network project is how the network could help organizations establish these kinds of local partnerships and initiatives. Perhaps the recent and existing SENCER-ISE partnerships fit within this category.

Conclusions

Thinking about civic engagement and informal science education raises a number of questions for the science museum community.

Would science museums prefer a model where the museum organizations help to build their visitors’ capacities for their own civic engagement? This may be parallel to the main focus of SENCER and is perhaps closer to what museums do now but with a somewhat different focus.

Or would science museums prefer a model where the museum organization partners with other organizations to solve civic problems directly? This may be different from what museums are doing now if the civic problem is beyond access to quality education.

Are there societal issues beyond access to good education that science and children’s museums might be interested in pursuing? NISE Net asked partners in an annual partner survey and at regional meetings a few years ago about topics NISE Net partners might be interested in. The favorite topics in order of priority were energy, new emerging technologies, engineering, convergent technologies, climate change, brain and neuroscience, maker spaces, synthetic biology, societal and ethical implications, computer science, and big data. NISE Net did not, however, ask them about specific public concerns or societal issues related to these topics.

Would science museums collectively want to tackle an issue with national scope and develop resources centrally to support partner organizations in addressing the particular issue selected, with the opportunity for some customization locally? This is essentially what NISE Net has done with nanotechnology, synthetic biology, space and earth science, and other topics, but without a focus on a set of societal issues.

Alternatively would science museums want to tackle specific local issues with partners in their own communities and perhaps get help in doing so from an organization like NISE? NISE Net’s past activities have all supported local partnerships, for instance, between universities doing nano research and science museums, or between community organizations and science museums.

Exploration of these questions could help members of the science museum community and organizations like NISE Net map out possible courses for the future of civic engagement in informal science education.

About the Authors

Larry Bell

Larry Bell is Senior Vice President for Strategic Initiatives at the Museum of Science in Boston and was the principal investigator and director of the Nanoscale Informal Science Education Network from 2005 until 2017. Currently he is interested in public engagement with societal implications of science and technology, activities that engage the public in dialogue and deliberation about socio-scientific issues, and in how research in science communication can inform informal science education practices.

 

 

David Ucko

David Ucko has served as deputy director of the Division of Research on Learning in Formal and Informal Settings at the National Science Foundation (NSF), president of the Kansas City Museum, chief deputy director of the California Museum of Science and Industry, and vice president of programs and director of science at the Museum of Science and Industry in Chicago. He is currently vice president for organizational development of the Visitors Studies Association, co-chair for the National Research Committee on Communicating Chemistry in Informal Settings, and president of Museums+more, LLC, where he works on developing innovative approaches to informal learning. He holds a B.A. in chemistry from Columbia College of Columbia University and a Ph.D. in inorganic chemistry from Massachusetts Institute of Technology.

References

American Psychological Association (APA). (2018). Civic engagement. Retrieved February 2, 2018 from http://www.apa.org/education/undergrad/civic-engagement.aspx.

Association of Science-Technology Centers (ASTC). (2014, November/December).  Reconstructing STEM in our schools. Dimensions. Retrieved February 2, 2018 from http://www.astc.org/astc-dimensions/reconstructing-stem-schools/.

Center for Civic Engagement (CCE). (2014). What are civic life, politics, and government? In National standards for Civics and Government, 5–8 content standards. Retrieved February 2, 2018 from http://www.civiced.org/standards?page=58erica.

Dwyer, L. (2014, July 12).  Social issues Americans talk the most about on Twitter. TakePart, Participant Media. https://www.takepart.com/photos/10-social-issues-americans-talk-about-twitter-most/.

Ehrlich, T. (Ed.). (2000). Civic responsibility and higher education. Phoenix: The Oryx Press.

Friedman, A. (Ed.). (2008). Framework for evaluating informal science education projects. Report from a National Science Foundation workshop. Retrieved February 2, 2018 from http://informalscience.org/sites/default/files/Eval_Framework.pdf.

McCallie, E., Bell, L., Lohwater, T., Falk, J. H., Lehr, J. L., Lewenstein, B. V., Needham, C., & Wiehe, B. (2009). Many experts, many audiences: public engagement with science and informal science education. Washington, DC: Center for Advancement of Informal Science Education (CAISE).

New York Times. (2006). The definition of civic engagement. Retrieved February 2, 2018 from http://www.nytimes.com/ref/college/collegespecial2/coll_aascu_defi.html.

Ostman, R. (2006). STEM community partnerships and organizational change: Testing a scalable model to engage underrepresented children and families. Proposal to National Science Foundation from the Science Museum of Minnesota.

United Nations.  Global issues overview. Retrieved February 2, 2018 from http://www.un.org/en/sections/issues-depth/global-issues-overview/index.html.

Wildlife Conservation Society (WCS). (2009, June 24). Congo gorilla forest celebrates 10 years and $10.6 million raised for Central African parks. WCS Newsroom. Retrieved February 2, 2018 from https://newsroom.wcs.org/News-Releases/articleType/ArticleView/articleId/4891/Congo-Gorilla-Forest-Celebrates-10-Years-and-106-Million-Raised-for-Central-African-Parks.aspx.

Wetmore, J., Bennett, I., Jackson, A., & Herring, B. (2013). Nanotechnology and society: A practical guide to engaging museum visitors in conversations. NISE Net and The Center for Nanotechnology in Society. Retrieved February 2, 2018 from http://www.nisenet.org/catalog/nanotechnology-and-society-guide.

Wikipedia. 2017. Civic engagement.  Retrieved February 2, 2018 from https://en.wikipedia.org/wiki/Civic_engagement.

References (Introduction)

Friedman, A. J., & Mappen, E. (2011). SENCER-ISE: Establishing connections between formal and informal science educators to advance STEM learning through civic engagement. Science Education & Civic Engagement, 3(2), 31–37.

Kezar, A., & Gehrke, S. (2015). Communities of transformation and their work scaling STEM reform.Los Angeles: Pullias Center for Higher Education, Rossier School of Education, University of Southern California. Retrieved February 2, 2018 from https://pullias.usc.edu/wp-content/uploads/2016/01/communities-of-trans.pdf.

Semmel, M., & Ucko, D. (2017). Building communities of transformation: SENCER and SENCER-ISE. Informal Learning Review, 146(Sept/Oct), 3–7.

Ucko, D. (2015). SENCER synergies with informal learning. Science Education & Civic Engagement, 7(2), 16–19.

References

American Psychological Association (APA). (2018). Civic engagement. Retrieved February 2, 2018 from http://www.apa.org/education/undergrad/civic-engagement.aspx.

Association of Science-Technology Centers (ASTC). (2014, November/December).  Reconstructing STEM in our schools. Dimensions. Retrieved February 2, 2018 from http://www.astc.org/astc-dimensions/reconstructing-stem-schools/.

Center for Civic Engagement (CCE). (2014). What are civic life, politics, and government? In National standards for Civics and Government, 5–8 content standards. Retrieved February 2, 2018 from http://www.civiced.org/standards?page=58erica.

Dwyer, L. (2014, July 12).  Social issues Americans talk the most about on Twitter. TakePart, Participant Media. https://www.takepart.com/photos/10-social-issues-americans-talk-about-twitter-most/.

Ehrlich, T. (Ed.). (2000). Civic responsibility and higher education. Phoenix: The Oryx Press.

Friedman, A. (Ed.). (2008). Framework for evaluating informal science education projects. Report from a National Science Foundation workshop. Retrieved February 2, 2018 from http://informalscience.org/sites/default/files/Eval_Framework.pdf.

McCallie, E., Bell, L., Lohwater, T., Falk, J. H., Lehr, J. L., Lewenstein, B. V., Needham, C., & Wiehe, B. (2009). Many experts, many audiences: public engagement with science and informal science education. Washington, DC: Center for Advancement of Informal Science Education (CAISE).

New York Times. (2006). The definition of civic engagement. Retrieved February 2, 2018 from http://www.nytimes.com/ref/college/collegespecial2/coll_aascu_defi.html.

Ostman, R. (2006). STEM community partnerships and organizational change: Testing a scalable model to engage underrepresented children and families. Proposal to National Science Foundation from the Science Museum of Minnesota.

United Nations.  Global issues overview. Retrieved February 2, 2018 from http://www.un.org/en/sections/issues-depth/global-issues-overview/index.html.

Wildlife Conservation Society (WCS). (2009, June 24). Congo gorilla forest celebrates 10 years and $10.6 million raised for Central African parks. WCS Newsroom. Retrieved February 2, 2018 from https://newsroom.wcs.org/News-Releases/articleType/ArticleView/articleId/4891/Congo-Gorilla-Forest-Celebrates-10-Years-and-106-Million-Raised-for-Central-African-Parks.aspx.

Wetmore, J., Bennett, I., Jackson, A., & Herring, B. (2013). Nanotechnology and society: A practical guide to engaging museum visitors in conversations. NISE Net and The Center for Nanotechnology in Society. Retrieved February 2, 2018 from http://www.nisenet.org/catalog/nanotechnology-and-society-guide.

Wikipedia. 2017. Civic engagement.  Retrieved February 2, 2018 from https://en.wikipedia.org/wiki/Civic_engagement.

 

Download (PDF, 737KB)

Conversations about Technology and Society: Techniques and Strategies to Encourage Civic Engagement in Museums

Abstract

Museums are changing the way they connect with their communities by positioning themselves as venues for civic engagement and multidirectional dialogue. Through an effort known as Nano and Society, hundreds of museums and universities have collaborated to encourage conversations among community members, educators, scientists, and others about nanotechnologies. Nano and Society conversations focus on public audiences’ experiences and values, validating their opinions and identifying a role for them in making decisions about emerging technologies. This article describes how the content and design of Nano and Society conversations support participant learning, shares facilitation techniques that educators and scientists can use to implement the conversations in informal learning settings, and summarizes the professional and public impacts of the project.

Introduction

The National Informal STEM Education Network (NISE Net) is a community of informal educators and scientists dedicated to supporting learning about science, technology, engineering, and math (STEM) across the United States. Network partners include over 600 museums, universities, and other organizations that work together to develop, implement, and study methods for engaging public audiences in learning about current STEM research and its social dimensions (Ostman 2017).

The Network has experimented with a variety of educational products to engage public audiences in learning about the societal and ethical implications of current STEM research. These include interactive exhibits (Ostman 2015) and hands-on activities that invite exploration and discovery (Ostman 2016a, 2016b); forums that encourage dialogue among experts and citizens (Herring 2010; Lowenthal 2016); museum theatre programs that use theatrical techniques to create and cultivate emotional connections (Long and Ostman 2012); and games to foster play and social interaction (Porcello et al. 2017). Of these approaches to the social dimensions of STEM, to date the most widely adopted products and practices were developed as part of a project known as Nano and Society.

The project included a year of planning and development in 2011–2012 and was launched in 2012–2013 with a series of workshops that involved more than 50 museums and universities across the United States. The project team created a set of key concepts for conversations about nanotechnologies, a variety of conversational activities, and a suite of training materials. In 2013–2016, Nano and Society concepts, strategies, and resources were also incorporated into hands-on activity kits and exhibits that were distributed to hundreds more Network partners.

Early in the project, the team talked to professionals at Network partner organizations, including museums and universities, to learn more about the barriers to and opportunities for incorporating public learning experiences focusing on the societal and ethical implications of nanotechnologies. These discussions indicated what was needed in order for this content to be widely integrated into partners’ programming. First, Nano and Society themes had to be offered through common engagement formats that partner organizations were already using, such as hands-on activities, rather than new formats that were resource-intensive to learn and implement. Second, partners felt that an open-ended, conversational approach focusing on the public’s own ideas and values was more appropriate for their public audiences than a comprehensive discussion of costs, risks, and benefits of complex new technologies. And third, Network partners needed professional development in order to gain the necessary skills and confidence to implement this new approach.

The Nano and Society project team included members from Arizona State University, the Museum of Life and Science, the Museum of Science and Industry, the Oregon Museum of Science and Industry, the Science Museum of Minnesota, and the Sciencenter in Ithaca, New York. The work was supported by the NISE Network (in its original identity as the Nanoscale Informal Science Education Network) and the Center for Nanotechnology in Society at Arizona State University (CNS-ASU), each funded by the National Science Foundation for more than 11 years.

The resulting Nano and Society activities engage museum staff, scientists, and visitors in meaningful conversations about the relevance of emerging technologies to our lives. The conversations are designed to focus on participants’ own experiences and values related to technologies, to validate their opinions and identify a role for them in making decisions about emerging technologies, and to support learning as a social process. They are skillfully facilitated by educators or scientists to help participants apply their ideas to decisions about future nanotechnologies that we face as a society. This article describes how the content and design of Nano and Society conversations support participant learning, shares techniques that educators and scientists can use to implement the conversations in informal settings such as museums, and summarizes the professional and public impacts of the project.

Multidirectional Dialogue

Museums and their community partners represent an ideal location for people to explore perspectives on emerging technologies. Museums serve broad and sizeable audiences across the United States and are perceived as trusted venues for learning and socializing (AAM 2015). Although museums are increasingly interested in serving as community forums and promoting civic engagement, as a whole the field is not yet well equipped to do so in a way that is universally welcoming. In response, the Nano and Society project focused on increasing the capacity of museums across the country to engage their audiences in meaningful conversations about nanotechnologies.

The project is part of a growing movement for museums to provide a space for thoughtful reflection and civil conversation among multiple and diverse public audiences. Leaders, researchers, and practitioners across the field are calling for museums to serve as essential community resources and provide authentic, participatory learning experiences that address relevant and timely issues (Davis et al. 2003; Kadlec 2013; McCallie et al. 2009; Simon 2010). Professional organizations and funders emphasize the convening power of STEM-rich museums and their potential to promote civic engagement related to science-in-society (e.g. AAAS 2017; ASTC 2017; Ecsite 2017; IMLS 2017; NSF 2017; Science Center World Summit 2014).

One aspect of this movement has been the development of programs that address issues that their communities care about, introduce current scientific research, bring together scientists and community members, and provide multidirectional dialogue and engagement among participants. Museums of all types are increasingly experimenting with dialogue-based programming and exhibitions, particularly for addressing complex, contested, or sensitive topics (Bell 2013; Davies et al. 2009; Kollmann 2011; Kollmann et al. 2012; Kollmann et al., 2013; Lehr et al. 2007; McCallie et al. 2007; Ostman et al. 2013; Reich et al. 2007).

The Public Conversations Project defines dialogue as “any conversation in which participants search for understanding rather than for agreements or solutions,” and which is clearly distinct from “polarized debate” (Herzig and Chasin 2011, 3). The National Coalition for Dialogue & Deliberation characterizes dialogue as a process that “increases understanding, builds trust, and enables people to be open to listening to perspectives that are very different from their own” (NCDD 2014, 1). Dialogue allows people to share their values, perspectives, and experiences about difficult issues and to hear from others. It helps dispel stereotypes, build trust, and open people’s minds to ideas that are different from their own. Dialogue can, and often does, lead to both personal and collaborative action, but that action is not an essential outcome of dialogue (Bell 2013; Davies et al. 2009).

As a public engagement process, dialogue has several general characteristics. It involves utilizing facilitators and ground rules to create a safe atmosphere for honest, productive discussion; framing the issue, questions, and discussion material in a balanced and accurate manner; talking face-to-face; considering all sides of an issue; and establishing a foundation for continued reflection and possibly for future decisions or actions (NCDD 2014, 1). Within this general definition, the Nano and Society team focused on creating opportunities for dialogue that could be integrated seamlessly into a regular museum visit, were appropriate for general public audiences, and could be facilitated by any staff member or volunteer.

Nanotechnology and Society Content

Nanoscale science and engineering is a relatively new, interdisciplinary field of research that studies and manipulates matter at the level of atoms and molecules, enabling innovations in materials and devices. Some new nanomaterials and technologies allow improvements to existing products, such as computer chips, sunblock, and stain-resistant fabrics, while others could be transformative, such as elevators to space, invisibility cloaks, and cures for cancer. Because nanotechnologies are still developing, as a society we can influence what they are and how they are used. While the capability to create and use new technologies is based on advances in science and engineering, our individual and collective decisions about which technologies to develop and use are societal issues, with cultural, ethical, environmental, political, and economic dimensions. In order to participate fully in decisions about emerging technologies, Americans need both scientific and citizenship literacy skills (Partnership for 21st Century Skills 2015).

Nano and Society conversations offer participants an opportunity to understand the relationship between technologies and society, consider how emerging technologies will influence our lives, and learn how we can shape the development of new technologies. In other words, these conversations explore our values as individuals and consider the kind of future we want to build. Three “big ideas” provide a conceptual framework for the conversations: (1) Values shape how technologies are developed and adopted; (2) Technologies affect social relationships; and (3) Technologies work because they are part of larger systems (Wetmore et al. 2013).

Nano and Society conversations explore the many dimensions of the relationship between technology and society. They acknowledge that we will always have imperfect information about risks, benefits, and consequences, but emphasize that as individuals and as a society we still must make decisions about what science we will pursue and what technologies we will use. The goal of the conversation is not to solve complex issues on the spot, but rather to give public audiences the opportunity to develop knowledge, skills, and attitudes that are essential to engage deeply with current science and to participate as citizens. This shift to a science-in-society framework gives every visitor a role in the conversation, since the discussion is not about the technical aspects of scientific advances, but rather about the possibilities science and technology raise for our future, and what we want that future to be as individuals and communities.

Design Strategies

Nano and Society conversation are designed to have a flexible format, to include interactive elements, and to focus on accessible key concepts. They are relatively brief experiences that can be offered on the museum floor or incorporated into longer programs. They usually include a hands-on activity, demonstration, game, or other interactive element as a conversation-starter. Educators, scientists, and public audiences with a wide range of background knowledge and experience can participate in them equally, because they focus on the aspects of technologies that everyone has experience with: their own values, possible impacts on their social relationships, and the ways technologies interact as parts of systems in their lives. These design strategies allow the conversations to be used in a variety of ways in informal settings, with diverse participants.

The Nano and Society team uses a “cupcake” analogy to explain how these conversations are different from other kinds of informal learning experiences that focus on technologies. In a typical demonstration about a new technology, a museum educator might focus on the technology, talking about why it is amazing, who invented it, and how it is made. Finally, the educator might conclude by describing the impact that the technology could have on society and ask if there are any questions. In this approach, the societal and ethical implications of the technology are added on at the very end of the experience, like the sprinkles on top of a cupcake. In a Nano and Society conversation, the social dimensions of the technology are baked into the experience, not sprinkled on top. Both society and technology are integral and are considered together throughout the conversation.

For example, in a game called “Exploring Nano & Society—You Decide,” participants are given a set of cards that present a variety of new and emerging nanotechnologies, such as gold nanoshells for treating cancer and miniature military drones. The cards include the kinds of basic information described above, but the interaction does not focus on the technical aspects of the technologies. Rather, the participant group is asked to browse the new technologies and decide which ones they think are most important for society and should be prioritized for development. Usually, participants quickly realize that there are many different factors that determine which technologies are most “important,” and they discover that there are different opinions within their group. Often, participants are concerned that there may be downsides or unintended consequences to these technologies that we cannot predict. They may decide that the potential benefits of some technologies seem worth the potential costs and risks, while others do not. They may even go so far as to “ban” one or more of the options as too risky. Other technologies may be declared cool by some but frivolous by others, with negligible benefits. When the group settles on a scheme (or schemes), the facilitator introduces a character card. These cards present different people from around the world, such as a mother in Mozambique or an Iraqi soldier, and suggests some of the things those characters value and are concerned about. The group is asked to reprioritize the technologies based on the perspective of the character on the card. This re-sorting activity helps the group to see that technologies benefit individuals and countries in different ways and to different degrees, and that different people and countries may be interested in developing and using different kinds of technologies.

The design of the You Decide activity is simple, but it promotes rich conversations. Often, participants raise most of the key learning concepts amongst themselves, with just a bit of guidance from the facilitator. The facilitator joins in at key moments: explaining the game play, helping the group clarify their thoughts about a particular technology, judiciously choosing a character card that offers a different perspective, and helping the group draw some general conclusions from the game. Throughout, the conversation focuses equally on technologies and society, rather than primarily on the technologies themselves. That is, the social dimensions of technologies are baked into the conversation, not sprinkled on top.

Facilitation Techniques

In Nano and Society conversations, the typical roles of the educator or scientist and the participant shift. The educator or scientist takes on the role of facilitator rather than expert, asking questions, offering ideas or information to consider, and providing new perspectives. Meanwhile, participants take on some authority by contributing their values and experiences related to technologies. The facilitator guides the conversation by helping participants reflect on and form their own ideas and opinions and by introducing new perspectives and issues (Ostman et al. 2013; Wetmore et al. 2013).

Network educators have identified several techniques that help them facilitate interesting and meaningful conversations. The facilitator first invites participants to try the activity, demo, or game. “This introductory experience establishes rapport, provides some basic familiarity with nanotechnology, and introduces a topic for conversation. Then, the facilitator initiates a conversation by asking questions or making observations about what participants say and do. This validates participants’ perspectives and establishes a two-way interaction focused on developing ideas, rather than a one-way presentation of information. Then, the facilitator draws out participants’ experiences and values related to technologies. The facilitator might reflect participants’ ideas, ask open-ended questions, make connections to things participants are familiar with from from everyday life, or offer additional information for consideration. The facilitator gently guides the conversation, following participants’ interests and ideas. While the facilitator always has the key concepts in mind, and often has a repertoire of talking points and connections related to a given activity, the conversation never follows a set script. The facilitator also makes sure to involve everyone in the group. Finally, the facilitator follows participants’ cues, recognizing when the group is ready to move on and wrapping up graciously (Ostman et al. 2013).

For example, in the “Exploring Nano & Society—Invisibility” activity, the facilitator starts with a classic science demonstration about the refraction of light in order to spark participants’ curiosity. The facilitator explains that researchers are experimenting with ways of bending light to cloak objects, making them invisible to the human eye or to surveillance devices. So far, they have only succeeded at the nanoscale, but full-size invisibility cloaks could be coming soon. The facilitator then initiates a conversation about what participants would do if they had an invisibility cloak. A child might suggest mischievous activities, such as staying up past her bedtime or spying on her brother. The educator might ask the child how she would feel if someone spied on her using an invisibility cloak, leading to a discussion about privacy rights. A parent might ask what would happen if criminals had invisibility cloaks, turning the conversation to government regulation of technologies. Another child might suggest we need additional technologies—such as a cloak-detector—to deal with the problems this new invisibility technology introduces. The facilitator might point out that many of these issues have come up with previous technologies, and the group might think about how we can learn from some of these previous experiences.

Whichever way the conversation goes, the facilitator can draw out one or more of the Nano and Society key concepts. As they think and talk about the invisibility cloak, participants come to understand some of the ways in which they make and contribute to decisions about technologies. They recognize how this new technology would affect the way they interact with other people. And they articulate kind of future they want to live in and the ways they think emerging technologies may help build or block that future.

In a successfully facilitated conversation, participants enjoy their experience, develop an understanding of one or more of the key concepts of technology and society, connect these concepts to their own lives, and recognize their role as a decision-maker with regard to technologies (Wetmore et al. 2013). All parties in a conversation—educators, scientists, and public participants—explore concepts and practice ways of learning, talking about, and thinking about technologies that they can continue to apply in other aspects of their work and lives.

Another activity, “Exploring Nano & Society—Space Elevator,” asks participants to imagine what would happen if new nanomaterials made it possible for us to build elevators into space and invites them to sketch or talk about their ideas. Among intergenerational groups, children often feel confident drawing, while the facilitator and adults in the group discuss and ask questions. For example, at a community science night, one young girl meticulously drew a picture of a future space elevator, detailing how it would be powered, who could ride it, the route it would take through the solar system, training requirements for elevator staff, and the food they would serve on board. An adult then asked a simple but powerful question: “What’s up there when you arrive?” This led to a imaginative discussion about what kind of infrastructure we would build if we were colonizing space. As the girl started to draw houses, family members wondered, “Would our houses look like houses on Earth or would they have to be different for us to survive in space? Do we need mailboxes in space? Can we get mail? How do we communicate with people on Earth?” The act of drawing in concrete details inspired the group to consider a whole variety of interrelated systems and social structures we have on Earth and make decisions about whether or not they might need or want to recreate them if they were starting fresh somewhere else.

Ideally, these conversations empower participants (educators, scientists, and publics) to come to understand the role we all have in developing and adopting technologies, the ways those technologies affect our personal relationships and our society more broadly, and the ways all technologies work as part of interconnected systems. The three “big ideas” of Nano and Society are a powerful way to engage visitors in learning about nanotechnology. They spark interest and enjoyment, demonstrate relevance by connecting science and engineering with society, and indicate some of the ways that new technologies may affect our lives.

Professional Resources and Training

In order to share the Nano and Society approach across the Network, and to ensure museum staff and volunteers were comfortable with the new approach and resources, NISE Net and ASU-CNS committed to providing a comprehensive range of professional development opportunities and resources.

In 2012–13, the project team offered multi-day, in-person professional development workshops in four locations across the United States. Around 100 professionals from 50 different organizations were invited to attend the workshop. The workshops were organized around the three big ideas. Following an introduction to the project goals and rationale, each unit included improv exercisesdesigned to build facilitation skills and comfort related to open-ended conversations, practical experience learning and delivering Nano and Society conversations in small groups, and deeper exploration of one big idea as a large group. The workshops concluded with training in a Network practice known as team-based inquiry, which gave educators methods and tools to experiment with and identify facilitation techniques that support audience engagement and learning (Pattison et al. 2014).

Workshop participants were provided with physical kits they could use to do a similar training with their own staff and volunteers and to implement the activities with audiences at their home organization. The training kits included sample training agendas; an overview slide presentation explaining the rationale for exploring the social dimensions of technologies in an informal learning setting; short, humorous videos exploring the big ideas; guides for a set of improv exercises to strengthen essential skills; team-based inquiry tools; and physical materials and supplies to try out and implement a series of Nano and Society conversations. While the Nano and Society project used a “train-the-trainer” model, completely faithful implementation of the workshop, or the conversation activities, was not essential; it was more important that participants implemented the resources in a way that was appropriate, sustainable, and empowering for their institution and audiences.

The project also built in several follow-up opportunities for workshop participants. There were two online sessions scheduled soon after the in-person workshops, designed to support museums as they began to train additional staff and volunteers and implement the programming. The first online session oriented museums to their physical kits and the resources they contained and was intended to prepare the participants from the in-person workshop to train other educators at their organization. The second online session provided an opportunity to discuss facilitation strategies with peers and was intended to allow educators to share their experiences and insights as they began having Nano and Society conversations with public audiences. Finally, NISE Net’s Network-Wide Meeting offered an additional in-person opportunity for workshop participants to reconnect and share their learnings with others.

After the initial series of workshop trainings, all the Nano and Society materials were made available online for free download (Sciencenter et al. 2012), and additional Nano and Society trainings were offered online and in other Network meetings. As with all Network resources, the Nano and Society materials are open source and distributed through a Creative Commons license, and Network partners are encouraged to adapt them to fit their mission, educational setting, and local audiences.

Project Impact

The Nano and Society project has had a great impact on the NISE Network community. The products and professional practices developed by the project are widely used, with partners across the United States engaging multiple and diverse public audiences in conversations about technology and society.

Nano and Society has been studied in terms of professional learning, public learning, and research-to-practice partnerships. As a capacity-building project, it was included in the Network’s professional impacts summative evaluation study (Goss et al. 2016). Nano and Society public educational activities were incorporated into a variety of Network products, and their public impacts are assessed as part of the overall summative evaluation of those products (see Kollmann et al. 2015; Svarovsky et al. 2013; Svarovsky et al. 2014). Finally, the project was included as a case in a research study that examined how complex science ideas are made accessible to public audiences through research-to-practice partnerships between university scientists and museum professionals (Lundh et al. 2014).

NISE Net’s logic model articulates the Network’s overall theory of change. Essentially, the Network achieves public impact through the efforts of our institutional partners, including museums, universities, and other organizations committed to informal STEM education. The Network provides professional development and educational products to our institutional partners. Staff and volunteers implement these resources, establishing additional local partnerships and engaging local public audiences. Thus, the direct impact of the Network (and efforts such as Nano and Society) is on our professional partners, and the indirect impact is on the public audiences they engage (see Bequette et al. 2017, 15–17).

Consistent with the Network logic model, the Nano and Society project’s primary goal was to increase the capacity of informal educators to engage public audiences in learning about the social dimensions of nanotechnologies, with the expectation that they would then implement conversations with their local audiences. The project addressed two related professional impact goals for the Network: by participating in the Network, professionals would (1) understand theories, methods, and practices for effectively engaging diverse public audiences in learning about nano; and (2) utilize professional resources and educational products for engaging diverse public audiences in learning about nanoscale science, engineering, and technology.

The NISE Network Professional Impacts Summative Evaluation is a longitudinal study of individual professionals, primarily working at museums and universities, over the final three years of the Nanoscale Informal Science Education Network (project years 7-10) (Goss et al. 2016). The study explored how involvement with NISE Net impacted professionals’ sense of community, learning about nano, and use of nano educational products and practices. It employed two data collection methods over three years: an annual partner survey that involved a total of 597 professionals, and yearly interviews with a representative subset of 21 professionals (Goss et al. 2016). Within the study, the Nano and Society project was considered in terms of the two relevant professional impact goals described above: the degree to which Network partners adopted the professional practices it represented, and the degree to which they used the professional resources and public products it distributed.

The evaluation team found that over the study period, professionals reported becoming more confident in Nano and Society concepts and increased the extent to which they attributed that confidence to NISE Net. The percentage of professionals who reported using Nano and Society practices for engaging the public grew, and individuals reported increasing the amount of time they focused on societal and ethical implications of nanotechnologies with their audiences. By the end of the funded project period (year 10), 83  percent of all Network professional partners engaged the public in Nano and Society content. Of these, 94 percent used Network resources (Goss et al. 2016, 65–66, 72, 95–96). Half of the study respondents in the final study year (project year 10) also reported using Nano and Society ideas to engage audiences in learning about other STEM topics, transferring the skills and techniques they had learned to other aspects of their work (Goss et al. 2016, 98–99). These findings are particularly impressive when compared to evaluation results prior to the Nano and Society effort (project year 5), when only a small percentage of Network partners engaged public audiences in learning about the societal and ethical implications of nanotechnologies (Kollmann 2011).

The professional impacts summative evaluation also offers some potential explanations for why Nano and Society practices and products had a large impact on the Network, while others promoted by the Network were used less extensively. The authors note that in conceiving the Nano and Society project, Network leadership took into account the summative evaluation of related previous work; a team was assigned to learn about partners’ barriers and needs with regard to this challenging content, and new partnerships were established and substantial resources were dedicated to acting upon this information (Goss et al. 2016, 93). A full suite of professional resources helped professionals learn conversation practices, train others at their own organization, and share their results across the Network. A group of educational products, specifically designed to be integrated into activities Network partners already engaged in, provided concrete opportunities to implement Nano and Society ideas and practices immediately (Goss et al. 2016, 100).

The NISE Net Years 6-10 Evaluation Summary Report (Bequette et al. 2017) provides additional insight, identifying some of the general strategies that helped the Network to build the capacity of the field to do programming related to nanoscale science, engineering, and technology (including Nano and Society conversations). One successful strategy was creating educational products that model and embed best practices through their design, helping to ensure successful public learning outcomes and professional learning through implementation (Bequette et al. 2017, 44–45). Another important strategy was providing professional development opportunities that allow for deeper learning and sharing of ideas and expertise among Network partners (Bequette et al. 2017, 46–47).

Since 2013, Nano and Society concepts and conversation activities have been integrated throughout the Network’s educational products, including our most widely distributed and used materials: NanoDays kits of hands-on activities and the Nano small footprint exhibition. Because Nano and Society is now embedded into much of our public engagement work, the Network does not have data on the number of people who participated in Nano and Society conversations specifically. We do know that as of 2015, over eleven million people each year participate in NanoDays and the Nano exhibition which both incorporate Nano and Society conversations and concepts (Svarovsky et al. 2015; see also Kollmann et al. 2015). In addition, many Network partners are applying the practices and tools they have learned (such as improv exercises to train staff in facilitation techniques) to other content areas and work at their own institutions. And finally, the Network leadership and development teams continue to use Nano and Society ideas, models, and strategies for new projects that focus on a variety of STEM fields, further extending the impact of the project.

Conclusions

Science centers, children’s museums, and other informal science learning organizations are increasingly finding ways to connect with our communities and make
the experiences we offer more relevant to our audiences’ lives. By incorporating participants’ own perspectives into their learning experiences and by fostering productive social interactions, we hope to make museum learning opportunities more impactful and engaging for our audiences. At the same time, professional organizations and funding agencies seek to encourage dialogue among scientists, engineers, policymakers, and people everywhere in order
to help understand and solve a variety of pressing global and local issues. As institutions that are trusted by all of these parties, informal learning organizations provide an important venue for these conversations, fostering civic engagement and dialogue.

Through Nano and Society and subsequent projects, NISE Net partners are working together to encourage multidirectional dialogue among community members, educators, scientists, and others. In Nano and Society conversations, insight occurs when participants think about the people that imagine, create, and decide to use technologies. They come to understand the role we all have in developing and adopting technologies, and the ways that those technologies affect our personal relationships and our society more broadly. Ultimately, Nano and Society conversations can help people feel empowered to make and contribute to decisions about new and emerging technologies.

About the Author

Rae Ostman is a faculty member in the School for the Future of Innovation in Society at Arizona State University and director of the National Informal STEM Education Network (NISE Net).  She has broad experience planning, developing, implementing, and studying museum exhibits, programs, media, and other learning experiences in partnership with diverse organizations. She can be reached at rostman@asu.edu or 607-882-1119.

Acknowledgements

This work was supported by the National Science Foundation under Award Nos. 0940143 and 0937591. Any opinions, findings, and conclusions or recommendations expressed in this article are those of the author and do not necessarily reflect the views of the Foundation.

The Nano and Society project was a close collaboration that included many talented museum staff participating in the Nanoscale Informal Science Education Network and our academic partners at the Arizona State University Center for Nanotechnology in Society. In particular, Ira Bennett, Brad Herring, Ali Jackson, and Jamey Wetmore were involved in all aspects of the work described here. The evaluation work was performed by NISE Net’s multi-organizational team led by Liz Kollmann. Dave Guston, principal investigator for ASU-CNS, recognized the importance of public engagement and committed intellectual and financial resources to the collaboration with NISE Net. And finally, for over eleven years the Nanoscale Informal Science Education Network was led by principal investigator Larry Bell, who consistently supported and encouraged the Network’s efforts to help informal educators, scientists, and public audiences explore the social dimensions of nanotechnologies together.

References

American Alliance of Museums (AAM). 2014 Museum Facts. http://www.aam-us.org/about-museums/museum-facts (accessed May 30, 2017).

American Association for the Advancement of Science (AAAS). 2017. About AAAS. https://www.aaas.org/about/mission-and-history (accessed May 30, 2017).

Association of Science – Technology Centers (ASTC). 2017. Global Initiatives. http://www.astc.org/about-astc/global-initiatives/ (accessed May 30, 2017).

Bell, L. 2013. “Engaging the Public in Public Policy.” Museums & Social Issues 4 (1): 21–36.

Bequette, M., M. Beyer, E.K. Kollmann, G. Svarovsky, and L. Rosino Wright. 2017. NISE Net Years 6–10 Evaluation Summary Report. Saint Paul, MN: Science Museum of Minnesota for the NISE Network. http://nisenet.org/content/nise-net-years-6-10-evaluation-summary-report-2017 (accessed May 30, 2017).

Davies, S., E. McCallie, E. Simonsson, J.L. Lehr, and S. Duensing. 2009. “Discussing Dialogue: Perspectives on the Value of Science Dialogue Events That Do Not Inform Policy.” Public Understanding of Science 18 (3): 338–353.

Davis, J., E.H. Gurian, and E. Koster. 2003. “Timeliness: A Discussion for Museums.” Curator 46 (4): 353–361.

Ecsite. 2017. Projects. https://www.imls.gov/about-us (accessed May 30, 2017).

Goss, J., R. Auster, M. Beyer, L.A. Mesiti, and E.K. Kollmann. 2016. NISE Network Professional Impacts Summative Evaluation. Boston, MA: Museum of Science for the NISE Network. http://nisenet.org/catalog/nise-network-professional-impacts-summative-evaluation-2016 (accessed May 30, 2017).

Herring, B., ed. 2010. NISE Network Public Forums Manual. Durham, NC: Museum of Life + Science for the NISE Network. http://nisenet.org/catalog/public-forums-manual (accessed May 30, 2017).

Herzig, M., and L. Chasin. 2011. Fostering Dialogue across Divides: A Nuts and Bolts Guide from the Public Conversations Project. http://www.publicconversations.org/sites/default/files/PCP_Fostering%20Dialogue%20Across%20Divides.pdf (accessed May 30, 2017).

Institute of Museum and Library Services (IMLS). 2017. About Us. https://www.imls.gov/about-us (accessed May 30, 2017).

Kadlec, A. 2013. “Mind the Gap: Science Museums as Sources of Civic Innovation.” Museums & Social Issues 4 (1): 37–53.

Kollmann, E.K. 2011. “Engaging the Public with Societal and Ethical Implications Content through NISE Network Products.” In Review of NISE Network Evaluation Findings: Years 1-5 Summative Evaluation, C. Reich, J. Goss, E. Kollmann, J. Morgan, and A. Nelson,  eds., 78–112. Boston, MA: Museum of Science for the NISE Network. http://nisenet.org/catalog/evaluation/review (accessed May 30, 2017).

Kollmann, E.K., J. Goss, C. Lussenhop, S. Iacovelli, and C. Reich. 2012. Provocative Questions: Supporting Effective Dialogue about Societal Issues Informed by Human Biology in a Changing World. Exploratory Research. Boston, MA: Museum of Science.

Kollmann, E.K., C. Reich, L. Bell, and J. Goss. 2013. “Tackling Tough Topics: Using Socio-Scientific Issues To Help Museum Visitors Participate in Democratic Dialogue and Increase Their Understandings of Current Science and Technology.” Journal of Museum Education, 38 (2): 174–186.

Kollmann, E.K., G. Svarovsky, S. Iacovelli, and M. Sandford. 2015. NISE Net Research on how Visitors Find and Discuss Relevance in the Nano Exhibition. Boston: Museum of Science for the NISE Network.
http://nisenet.org/catalog/nise-net-research-how-visitors-find-and-discuss-relevance-nano-exhibition (accessed May 30, 2017).

Lehr, J.L., E. McCallie, S.R. Davies, B.R. Caron, B. Gammon, and S. Duensing. 2007. “The Value of ‘Dialogue Events’ as Sites of Learning: An Exploration of Research and Evaluation Frameworks.” International Journal of Science Education 29 (12): 1467–1487.

Long, S., and R. Ostman. 2012. “Using Theatre and Film To Engage the Public in Nanotechnology.” In Little by Little: Expansions of Nanoscience and Emerging Technologies, H. van Lente, C. Coenen, T. Fleischer, K. Konrad, L. Krabbenborg, C. Milburn, F. Thoreau, and T. Zülsdorf, eds., 59–64. Heidelberg: Akademische Verlagsgesellschaft/IOS Press.

Lowenthal, C., ed. 2016. Forums Manual: Engaging Participants in Thoughtful Conversations. Boston, MA: Museum of Science. http://www.buildingwithbiology.org/sites/building-with-biology/themes/bwb/img/BuildingwithBiology_Forums_Manual_Final.pdf (accessed May 30, 2017).

Lundh, P., T. Stanford, and L. Shear. 2014. Nano and Society: Case Study of a Research-to-Practice Partnership between University Scientists and Museum Professionals. Menlo Park, CA: SRI International.

McCallie, E., E. Simonsson, B. Gammon, K. Nilsson, J. Lehr, and S. Davies. 2007. “Learning To Generate Dialogue: Theory, Practice, and Evaluation.” Museums & Social Issues 2 (2): 165–184.

McCallie, E., L. Bell, T. Lohwater, J.H. Falk, J.L. Lehr, B.V. Lewenstein, C. Needham, and B. Wiehe. 2009. Many Experts, Many Audiences: Public Engagement with Science and Informal Science Education. A CAISE Inquiry Group Report. Washington, D.C.: Center for Advancement of Informal Science Education (CAISE). http://www.informalscience.org/sites/default/files/PublicEngagementwithScience.pdf (accessed May 30, 2017).

National Coalition for Dialogue & Deliberation (NCDD). 2014. Engagement Streams Framework. Revised edition created by Sandy Heierbacher and members of the NCDD community. http://www.ncdd.org/files/rc/2014_Engagement_Streams_Guide_Print.pdf (accessed May 30, 2017).

National Science Foundation (NSF). 2017. About the National Science Foundation. https://www.nsf.gov/about/ (accessed May 30, 2017).

Ostman, R. 2015. NISE Network Nano Exhibition: Creating a Small Footprint Exhibition with Big Impact. Saint Paul, MN: Science Museum of Minnesota for the NISE Network. http://nisenet.org/catalog/nise-network-guide-nano-exhibition-creating-small-footprint-exhibition-big-impact (accessed May 30, 2017).

———. 2016a. NanoDays: A NISE Network Guide To Creating Activity Kits, Building Community, and Inspiring Learning. Saint Paul, MN: Science Museum of Minnesota for the NISE Network. http://nisenet.org/catalog/nanodays-guide (accessed May 30, 2017).

———. 2016b. NISE Network Program Development: A Guide To Creating Effective Learning Experiences for Public Audiences. Saint Paul, MN: Science Museum of Minnesota for the NISE Network. http://nisenet.org/catalog/nise-network-program-development-guide (accessed May 30, 2017).

———. 2017. National Informal STEM Education Network Report to Partners: 2005–2016. Saint Paul, MN: Science Museum of Minnesota for the NISE Network. http://nisenet.org/catalog/nise-network-impacts-report-partners (accessed May 30, 2017).

Ostman, R., B. Herring, A. Jackson, I. Bennett, and J. Wetmore. 2013. “Making Meaning through Conversations about Science and Society.” Exhibitionist 32 (1): 42–47.

Partnership for 21st Century Skills.  2015. Reimagining Citizenship for the 21st Century: A Call to Action for Policymakers and Educators. http://www.p21.org/storage/documents/Reimagining_Citizenship_for_21st_Century_webversion.pdf (accessed May 30, 2017).

Pattison, S., S. Cohn, and L. Kollmann. 2014. Team-Based Inquiry: A Practical Guide for Using Evaluation to Improve Informal Education Experiences. Portland, OR: Oregon Museum of Science and Industry for the NISE Network. http://nisenet.org/catalog/team-based- inquiry-guide (accessed May 30, 2017).

Porcello, D., C. McCarthy, and R. Ostman. 2017. Gaming and the NISE Network: A Gameful Approach to STEM Learning Experiences. Saint Paul, MN: Science Museum of Minnesota for the NISE Network. http://nisenet.org/content/gaming-and-nise-network-gameful-approach-stem-learning-experiences (accessed June 8, 2017).

Reich, C., L. Bell, E.K. Kollmann, and E. Chin. 2007. “Fostering Civic Dialogue: A New Role for Science Museums?” Museums & Social Issues 2 (2): 207–220.

Science Center World Summit. 2014. Mechelen Declaration: Public Engagement for a Better World. http://www.scws2014.org/wp-content/uploads/2014/03/Mechelen-Declaration_def.pdf (accessed May 30, 2017).

Sciencenter, Arizona State University Center for Nanotechnology in Society, Museum of Life and Science, and Museum of Science and Industry. 2012. Nano and Society Training Materials. Ithaca, NY: Sciencenter for the NISE Network. http://www.nisenet.org/catalog/nano-and-society-training-materials (accessed May 30, 2017).

Simon, N. 2010. The Participatory Museum. Santa Cruz, CA: Museum 2.0.

Svarovsky, G., J. Goss, G. Ostgaard, N. Reyes, C. Cahill, R. Auster, et al. 2013. Summative Study of the Nano Mini-Exhibition. Saint Paul, MN: Science Museum of Minnesota for the NISE Network.
http://nisenet.org/catalog/evaluation/public_impacts_mini-exhibition_study_year_8_summative_evaluation (accessed May 30, 2017).

Svarovsky, G., Z. Tranby, C. Cardiel, R. Auster, and M. Bequette. 2014. Summative Study of the NanoDays 2014 Events. Notre Dame, IN: University of Notre Dame for the NISE Network. http://nisenet.org/catalog/summative-evaluation-study-nanodays-2014-events (accessed May 30, 2017).

Svarovsky, G.N., J. Goss, and E.K. Kollmann. 2015. Public Reach Estimations for the NISE Network. Saint Paul, MN: Science Museum of Minnesota for the NISE Network. http://nisenet.org/catalog/public-reach-estimations-nise-network (accessed May 30, 2017).

Wetmore, J., I. Bennett, A. Jackson, and B. Herring. 2013. Nanotechnology and Society: A Practical Guide to Engaging Museum Participants in Conversations. Tempe, AZ: Arizona State University for the NISE Network. http://nisenet.org/catalog/nanotechnology-and-society-guide (accessed June 5, 2017).

Download (PDF, 822KB)

Students as Curators: Visual Literacy, Public Scholarship, and Public Health

Debby R. Walser-Kuntz,
Carleton College
Cassandra Bryce Iroz,
Carleton College

Visual Literacy and Science

Visual literacy is a set of abilities that enables an individual to effectively find, interpret, evaluate, use, and create images and visual media. Visual literacy skills equip a learner to understand and analyze the contextual, cultural, ethical, aesthetic, intellectual, and technical components involved in the production and use of visual materials. A visually literate individual is both a critical consumer of visual media and a competent contributor to a body of shared knowledge and culture (Hattwig et al. 2012, 62).

Designing a public exhibition is one way for students to meet the goals of the Visual Literacy Competency Standards for Higher Education quoted above. Students able to combine visual literacy with strong writing will be better prepared“to function creatively and confidently in the working environments of the twenty-first century” (Weber 2007). Scientists rely on visual images, animations, and 3D models to convey research findings and concepts, yet educational research shows that students“do not necessarily automatically acquire visual literacy during general instruction,” but must be explicitly taught these skills (Schönborn et al. 2006). Exhibition design provides a powerful pedagogical approach, helping students learn to “author” in a manner distinct from traditional writing.

Libraries and museums“educate and inform the public about the subject of the exhibit in a balanced and usually unbiased way” (Walbert 2004) and expand the general public’s “engagement with and understanding of” a topic (Smithsonian Institution 2002). In order to successfully engage people of all backgrounds, exhibit designers must focus on and carefully consider their audience (Smithsonian Institution 2002). Producing such exhibits encourages students to think creatively and to practice a range of skills, including critical thinking, problem solving, research, teamwork, goal setting, and technological literacy (Walbert 2004). Further, exhibitions that are interdisciplinary, such as those dealing with public health, require students to “apply skills or investigate issues across many different subject areas or domains of knowledge” (Great Schools Partnership 2014). Because the final product involves everyone, students must articulate their ideas and defend their choices in an iterative process (Great Schools Partnership 2014). This group approach requires students to work in a multi-member team resembling what they may encounter in a future career (Smithsonian Institution 2002). In addition to developing collaborative skills, increasing visual literacy, and fostering innovation, exhibition design assignments increase student engagement with course content and “facilitate student expression in media that are not purely textual” (Lippincott et al. 2014).

Exhibition Design as a Teaching Strategy: Students as Curators

We incorporated a public exhibition as a final project for Public Health in Practice, a program novel in its design of combining domestic study away with local academic civic engagement (ACE) projects (Walser-Kuntz and Iroz 2015). Students enrolled in an introductory course to learn about public health models, best practices for working with and in a community, and effective communication of health messages. They then studied off campus for two weeks in both the state’s and nation’s capital cities and participated in a follow-up course back on campus; it was in this final course that students developed the exhibition. Inspired by the Association of Schools and Programs of Public Health “This is Public Health” campaign, we titled our exhibit “This is Public Health: Public Health in Practice.” The goals of the exhibit included (1) sharing our experience with the broader campus, (2) educating others on important aspects of public health, and (3) exposing students to a career field they might be interested in pursuing. As public health is an interdisciplinary field, we aimed to show how it is approached from multiple angles and how all students, regardless of major, might participate. The central location of the library—both geographically and intellectually—allowed students, faculty, staff, and visitors the opportunity to explore the exhibit.

Throughout the process, students engaged in many tasks required of professional museum exhibition cura- tors, including brainstorming, identifying key themes, and thinking about audience “take aways,” all while presenting a balanced view (Walbert 2004). To guide the process, the class partnered with the library curator; partnering made the endeavor “less risky” and more successful, as we were new to exhibition design as a pedagogical approach (Lippincott et al. 2014). While the librarian’s expertise in visual design and exhibit planning was invaluable, she was new to public health concepts and thus provided an important perspective. She helped us balance detail and eliminate jargon that we had become accustomed to using in our own conversations with one another and with public health professionals.

Although the curator served as a consultant, the students built the exhibition from the ground up with few imposed guidelines or restrictions and took on all the typical roles required for successful execution of an exhibit. These roles include curator (responsible for the overall concept of an exhibit), designer (ensuring the material is understandable, visually appealing, and coherent), and educator (linking content to the audience) (Smithsonian Institution 2002). The entire process encouraged students to reflect on their learning, synthesize and simplify concepts for a general audience, and consider topics from a different perspective. The iterative process of designing the exhibition required a constant review and refinement of ideas, forcing a concise articulation of key points and a clear rationale for the inclusion of an image or design feature. Fonts and color choices received close scrutiny, and the final product required open discussion and compromise. We invited our our academic technologist specializing in presentation and visual design to walk through a mockup of our exhibit and give feedback on images, written messages, and the overall feel of the exhibit. This formative assessment activity continued “the exciting dialogue between exhibit makers and exhibit users” and improved the final exhibit (McLean 1993).

Exhibition Design as a Teaching Strategy: Student Outcomes

Planning the exhibit met the visual literacy competency standard number six: the visually literate student designs and creates meaningful images and visual media (Hattwig et al. 2012). Learning goals met by each student included producing visual materials for scholarly use, using design strategies and creativity in image production, experimenting with image-production tools, and revising work based on evaluation (Hattwig et al. 2011). It allowed us to authentically return to “communicating health messages,” a topic covered earlier through research projects, classroom activities, and visits with public health professionals. One particular classroom activity required students to select, analyze, and present an infographic while the class dis- cussed its effectiveness. Infographics are tools frequently used to disseminate public health information to a general audience; thus this media format served as inspiration for the exhibit design. On our study away, students visited with a science museum curator who shared the importance of considering the cultural and educational backgrounds of a diverse audience when communicating and translating science. This visit informed students as they curated, designed, and made decisions about the educational content of their own exhibit.

Student ownership of the project was strong; their investment throughout the process resulted in lively class discussions as we planned, compromised, and refined. The exhibit-planning process encouraged students to reflect on their experiences and synthesize all they had learned through their coursework, study away, and ACE projects into clear, concise messages for the public. In addition to gaining enhanced visual literacy and collaboration skills, their understanding of the core concepts of public health increased. Being forced to articulate complex public health models and approaches in a single sentence required a high degree of understanding (Figure 1). On occasion, students struggled with whether or not to include certain topics or images as they recognized the potential harm. This sophisticated understanding of the ethical implications of their exhibit addressed standard seven of the visual literacy standards as students followed “ethical … best practices when…creating images”; it further demonstrated how each student had become “a competent contributor to a body of shared knowledge and culture” (Hattwig et al. 2011; Hattwig et al. 2012).

Exhibitions and Civic Engagement

Our public health program emphasized working with community. To include visitors in our exhibit we included a large rolling white board with the prompt “What is public health to you?” Visitors left comments and we took photos throughout the exhibit to capture their responses. Anecdotally we heard that many students, faculty, and staff visited and enjoyed the exhibit; we did not, however, formally assess visitor outcomes. In the next iteration of the course, we will incorporate an additional “prototype” step in which we invite students from another course to provide feedback. Although the exhibit is no longer installed, it exists online with an additional interactive component (http://apps.carleton.edu/ccce/issue/health/public-health-in-practice/).

The Public Health in Practice exhibition provided a novel way to incorporate public scholarship into a course. A recent survey of liberal arts faculty indicates that an exhibition is a well-understood form of public scholarship and one that is highly regarded (Christie et al. 2015). In our case, the infographic-style posters educated visitors about important aspects of public health, while highlighting the field’s breadth and interdisciplinarity and raising awareness of related careers; the exhibit thus addressed the Institute of Medicine’s recommendation that all undergraduates learn about public health (Petersen et al. 2013). Although our exhibit focused on public health, most science courses touch on topics that could become the basis for interesting and educational exhibits that provide an enriching opportunity for students and public audiences alike.

About the Authors

Debby Walser-Kuntz is a Professor of Biology and the Broom Faculty Fellow for Public Scholarship at Carleton College in Northfield, MN. Debby received her Ph.D. in immunology from the Mayo Graduate School in Rochester, MN. Her research focuses on the impact of environmental factors, including the plastics component bisphenol-A and a high fat diet, on the immune system. She ventured into the world of academic civic engagement more than ten years ago after recognizing that her bright and talented students could still learn, and in fact might learn more, while sharing their knowledge with others.

Cassandra Iroz is a 2014 graduate of Carleton College with a B.A. in Biology. After graduation, she worked as an educational associate in Carleton’s Center for Community and Civic Engagement and as the teaching assistant for the Public Health in Practice pro- gram. In this role she assisted in organizing and facilitating coursework, travel, and community based academic civic engagement projects all relating to public health.

References

Christie, L., P. Djupe, S. O’Rourke, and E. Smith. 2015. “Whose Job Is It Anyway?: The Place of Public Engagement in the Liberal Arts.” Working Paper, Furman University.

Great Schools Partnership. 2014. The Glossary of Education Reform: Exhibition. http://edglossary.org/exhibition/ (accessed December 17, 2015).

Hattwig D. J. Burgess, K. Bussert, and A. Medaille. 2011. ACRL Visual Literacy Competency Standards for Higher Education. Chicago: American Library Association. http://www.ala.org/ acrl/standards/visualliteracy (accessed December 17, 2015).

Hattwig, D., K. Bussert, A. Medaille, and J. Burgess. 2012. “Visual Literacy Standards in Higher Education: New Opportunities for Libraries and Student Learning.” Libraries and the Academy 13 (1): 61–89.

Lippincott, J., A. Vedantham, and K. Duckett. 2014. “Libraries as Enablers of Pedagogical and Curricular Change.” http://www. educause.edu/ero/article/libraries-enablers-pedagogical-and- curricular-change (accessed December 17, 2015).

McLean, K. 1993. Planning for People in Museum Exhibitions.

Washington, DC: Association of Science-Technology Centers.

Petersen, D., S. Albertine, C. Plepys, and J. Calhoun. 2013. “Developing an Educated Citizenry: The Undergraduate Public Health Learning Outcomes Project.” Public Health Reports 128: 425–30.

Schönborn, K., and T. Anderson. 2006. “The Importance of Visual Literacy in the Education of Biochemists.” Biochemistry and Molecular Biology Education 34 (2): 94–102.

Smithsonian Institution. 2002. The Making of Exhibitions: Purpose, Structure, Roles, and Process. Washington, DC: Office of Policy and Analysis.

Walbert, K. 2004. “Museum Exhibit Design.” http://www.learnnc. org/lp/pages/629 (accessed December 17, 2015).

Walser-Kuntz, D., and C. Iroz. 2015. “Public Health in Practice: Combining Local Academic Civic Engagement with Domestic Study Away.” Working Paper, Carleton College.

Weber, J. 2007. “Thinking Spatially: New Literacy, Museums, and the Academy.” Educause Review 42 (1): 68–69.

Download (PDF, 798KB)

Discussing the Human Life Cycle with Senior Citizens in an Undergraduate Developmental Biology Course

Abstract

A civic engagement project was designed for undergraduate students in a developmental biology course to promote their understanding of the material as well as its relevance to issues in the local community. For this project, students prepared posters that focused on different stages of the human life cycle: gametogenesis, fertilization, embryonic development, fetal development, childhood (including adolescence), and adulthood (including senescence). Their posters were accompanied by activities designed to further engage the senior citizens who visited during a lab period at the end of the semester. While the senior citizens completed surveys, the students wrote short essays reflecting on the value of the project. The surveys demonstrated an increase in the senior citizens’ understanding of human development and of current issues related to the discipline. The students’ essays revealed that the project was beneficial for many reasons, most notably because it fostered a sense of civic responsibility among the next generation of scientists. [more]

Introduction

Civic engagement is a pedagogical strategy that is successfully employed in a variety of educational contexts (Colby et al. 2003). It is particularly well suited for undergraduates, including those at liberal arts institutions, where the mission often encourages interdisciplinary integration of skills and knowledge to engage with critical issues facing society. The incorporation of civic engagement into specific courses has reciprocal benefits for the students and the local, national, or even international communities to which they belong. Students gain critical insight into specific topics addressed in their coursework while also developing a sense of civic responsibility. In turn, communities may receive benefits when projects promote “quality of life” as envisioned in one definition of civic engagement (Ehrlich 2000). Such projects usually focus on important issues including, but not limited to, poverty, hunger, disease, voter registration, and environmental contamination; moreover, they impact a variety of constituencies, ranging from individuals to groups such as agencies, businesses, and non-profit organizations. While civic engagement manifests itself in diverse ways, there are some common themes, such as clearly defined learning goals and the opportunity for students to reflect carefully on the educational value of the experience. In many cases, academic credit is based on learning and not the on outcome of the project itself (Howard 1993).

Civic engagement is often discussed in the context of coursework in the social sciences. However, it has been argued that it is equally important that such pedagogy be implemented in the natural sciences, for a variety of reasons (Kennell 2000). For example, the projects can provide students with a better sense of how their acquired knowledge is, in fact, relevant to “the real world.” The projects can also help to educate citizens in the local community who have little or no background in the natural sciences, but who must often vote on issues related to the use of stem cells in regenerative medicine, the protection of organisms from the effects of climate change, and the creation of genetically engineered organisms to deal with agricultural pests. In fact, the estimated percentage of citizens who are “scientifically literate” is only 28 percent in the U.S. (Raloff 2010). In addition to promoting scientific literacy, the projects can help to demystify the process by which scientists collect and analyze data, which is important given the results of recent surveys reported by the National Science Board (2012). A variety of effective projects have already been implemented by scientists, including one in which students used emerging technologies as tools in projects related to environmental sustainability and designed to meet the specific needs of their community (e.g. an interactive trail map for a nature preserve prepared using GIS) (Green 2012). In the case of this particular project, the faculty member asked the students to complete surveys, provide anonymous feedback, and write an essay reflecting on their experiences. This project and others provided the inspiration for my own recent initiatives to incorporate civic engagement into advanced biology coursework.

Description of the Service Learning Project

I have incorporated a civic engagement project into a developmental biology course at Denison University, a small liberal arts institution in Granville, Ohio. An undergraduate course in developmental biology usually focuses on model systems—the fruit fly, frog, and chicken, for example— from which biologists have gained insight into the molecular basis of human disease and development. Fertilization, cleavage, and gastrulation are quite complex; accordingly, instructors usually devote several weeks to these earliest stages of embryonic development. In the absence of conversations about issues like stem cell research, however, it is easy for students to lose sight of the “big picture.” I therefore decided to design a project that would allow students to “come full circle” at the end of the semester by having them engage in a conversation about the human life cycle with local senior citizens. I chose to have the students work with senior citizens since many of the campus outreach programs are focused on local youth. In addition, I expected that the senior citizens would have many interesting, relevant experiences to share with the students, and that they would be a more appropriate audience given the nature of the course material.

For the project, I divided my 24 students into six groups, each focusing on one stage of the human life cycle: gametogenesis, fertilization, embryonic development, fetal development, childhood (including adolescence), and adulthood (including senescence). I provided each group with a poster template with three sections titled “Concept,” “Concept Explained,” and “In the News.” In the “Concept” section the students defined their stage in no more than two or three sentences, while in the section titled “Concept Explained,” the students provided more detailed information and, in some cases, divided their stage into several distinct steps (e.g. sperm attraction, acrosome reaction, fusion of the plasma membranes, prevention of polyspermy, activation of egg metabolism, and fusion of the genetic material, in the case of fertilization). Finally, in the section titled “In the News,” the students provided information on one recent issue, debate, or controversy related to their stage (in the case of fertilization, for example, the availability of a male contraceptive). In addition to the poster, I asked the students to develop a simple activity to further engage their audience. I provided them with a few ideas—completing a quiz, watching a short video on a laptop, and examining eggs, embryos, and/or larvae under a microscope—although I encouraged the students to think creatively about other options to facilitate learning. As the final component of the project, the students wrote a short essay on the value of civic engagement in the context of a liberal arts education and one thing they learned from their interactions with senior citizens. I was particularly interested in having them reflect on the value of this educational strategy in the natural sciences.

Other than providing them with a poster template, I offered little or no guidance to the individual groups; the students assumed responsibility for their poster displays as well as for the tasks required to prepare for the arrival of the senior citizens. During their visit, student volunteers escorted the senior citizens from one station to the next, giving them at least ten minutes to learn about each stage of the human life cycle. In many cases, the senior citizens were so engaged with the material that they remained at a station for much longer in order to ask questions and/or have an extended conversation with the students. The students ensured that there was sufficient seating in front of each poster display, since many of the senior citizens spent a total of about two hours rotating through the different stations. They had learned about this opportunity through an e-mail sent to retired staff or through an advertisement in the local newspaper, although a few were recruited from a local senior center by the John W. Alford Center for Service Learning at Denison. Snacks were purchased from the Smiling with Hope Bakery, which is run by special-needs students at Newark High School in Newark, Ohio.

Outcomes of the Service Learning Project

In an effort to assess the senior citizens’ learning, I prepared a short survey in which they rated their understanding of 1) human development, and 2) current issues in developmental biology both before and after visiting the poster displays. A total of 17 local senior citizens were recruited for the project, with thirteen of them completing the survey at the end of the afternoon (Table 1). In both cases, there was a statistically significant increase in their understanding, with several individuals offering positive comments about the experience, either through e-mail or through comments at the bottom of the survey. Indeed, students noted in their essays that the senior citizens were “focused,” “inquisitive,” and “enthusiastic,” with “a genuine interest in learning.” As the afternoon progressed, I came to realize that the senior citizens were modeling the idealistic concept of “lifelong learning” for my students through their intellectual engagement (McClure 2013).

To assess the students’ learning, I evaluated their poster displays and the essays that they wrote following the senior citizens’ visit. Since this was a pilot project, each component was worth only five percent of their final grade in the course. As I had expected, many students indicated that teaching what they had learned in the course helped them to gain a more complete understanding of important concepts in developmental biology. On a related note, they recognized civic engagement as an effective strategy to improve upon their communication skills. Many students also appreciated the opportunity to leave the “bubble” of campus life and interact with members of the local community, while learning how to “effectively converse [with them] about key issues facing society.” However, the students’ essays revealed that the project was beneficial in ways that I could not have predicted. For example, many students described their initial uncertainty about the value of civic engagement, but then wrote about how they came to view it as an “innovative way to incorporate many themes from our mission statement” and “a prime example of the types of endeavors [the institution] should continue to pursue to more fully provide its students with a liberal arts education.” They recognized it as an opportunity to “interact with diverse groups of people” and to “facilitate [their] growth into change makers that will work to fix the problems faced by humanity.” Several of them even described how rewarding it was to communicate knowledge with those who may not have had the opportunity to pursue an undergraduate education, noting their status as “privileged students,” who have a responsibility to “share [their] experience with others.”

Conclusions

I was quite satisfied with the extent to which the students reflected on the project and expressed “joy” (in their own words) in having the unique opportunity to engage with the local community as part of a biology course. In the future, I hope that this project will be extended to senior citizens from more impoverished communities, perhaps with students actually meeting them at a retirement facility. In addition, I hope to design alternative projects that address senior citizens’ specific interests (besides the human life cycle), since some of our visitors indicated on their surveys that they wanted to learn more about such topics as environmental influences on aging. And finally, I hope to encourage my peers to consider incorporating a civic engagement project into their own courses, since this educational strategy obviously has much to offer to students in the natural sciences, even in the realm of cellular and molecular biology. It can be easily accomplished during a single lab period, although it can be more extensive with activities spanning one or more semesters (e.g. Hark 2008; Imoto 2013; Larios-Sanz et al. 2011; Santas 2009). Regardless of the size and scope of the project, civic engagement can transform students’ thinking and inspire them to make important contributions to the world, whether as a nurse, teacher, or conservation biologist. It should be an integral component of every academic institution, “across all fields of study” as the National Task Force on Civic Learning and Democratic Engagement has declared (2012). In summary, I would argue that scientists have an important role to play in developing students’ sense of civic responsibility in the 21st century.

About the Author

Laura Romano

Laura Romano is an Associate Professor in the Department of Biology at Denison University in Granville, OH. She earned her BS in Biology from the College of William and Mary, and her PhD from the University of Arizona. She also completed three years of postdoctoral research at Duke University. She teaches introductory biology courses as well as advanced courses in developmental biology and invertebrate zoology. In addition to teaching, she enjoys advising students and mentoring them in her laboratory where she studies the evolution of developmental mechanisms using the sea urchin as a model system.

References

Colby, A., T. Ehrlich, E. Beaumont, and J. Stephens. 2003. Educating Citizens: Preparing America’s Undergraduates for Lives of Moral and Civic Responsibility. San Francisco: Jossey-Bass.

Ehrlich, T. 2000. Civic Responsibility and Higher Education. Phoenix: Oryx Press.

Green, D.P.J. 2012. “Using Emerging Technologies to Facilitate Science Learning and Civic Engagement.” Science Education and Civic Engagement 4 (2): 18–33.

Hark, A. 2008. “Crossing Over: An Undergraduate Service Learning Project that Connects to Biotechnology Education in Secondary Schools.” Biochemistry and Molecular Biology Education 36 (2): 159–165.

Howard, J. 1993. “Community Service Learning in the Curriculum.” In Praxis 1: A Faculty Casebook on Community Service Learning, J. Howard, ed., 3–12. Ann Arbor: OCSL Press.

Imoto, D. 2013. “Service-learning in an AIDS Course.” Science Education and Civic Engagement. 5 (1): 25–29.

Kennell, J. 2000. “Educational Benefits Associated with Service-learning Projects in Biology Curricula.” In Life, Learning, and Community: Concepts and Models for Service Learning in Biology, D. Brubaker and J Ostroff, eds., 7–18. Sterling, VA: Stylus Publishing, LLC.

Larios-Sanz, M., A. Simmons, R. Bagnall, and R. Rosell. 2011. “Implementation of a Service-learning Module in Medical Microbiology and Cell Biology at an Undergraduate Liberal Arts University.” Journal of Microbiology and Biology Education 12 (1). http://jmbe.asm.org/index.php/jmbe/article/view/274/html_100 (accessed July 9, 2014).

McClure, A. 2013. “Promoting the Liberal Arts.” University Business. http://www.universitybusiness.com/article/promoting-liberal-arts (accessed July 9, 2014).

National Science Board. 2012. Science and Engineering Indicators 2012. Arlington, VA: National Science Foundation.

National Task Force on Civic Learning and Democratic Engagement. 2012. “A Crucible Moment: College Learning and Democracy’s Future.” Washington, DC: Association of American Colleges and Universities.

Raloff, J. 2010. “Science Literacy: U.S. College Courses Really Count.” ScienceNews. https://www.sciencenews.org/blog/science-public/science-literacy-us-college-courses-really-count (accessed July 9, 2014).

Santas, A. 2009. “”Reciprocity within Biochemistry and Biology Service-learning.” Biochemistry and Molecular Biology Education 37 (3): 143–151.

 

Download (PDF, 126KB)